
MlBibTEX in Scheme

Jean-Michel HUFFLEN

LIFC (FRE CNRS 2661)
University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX
FRANCE
hufflen@lifc.univ-fcomte.fr

http://lifc.univ-fcomte.fr/~hufflen

Abstract

We present the main functions of MlBibTEX’s implementation using Scheme. In
particular, that allows us to see how the modules are organised and how to run
the different parts of MlBibTEX step by step. Let us recall that MlBibTEX deals
with several data formats (syntaxes w.r.t. TEX, bibliography files, xml) and we
show how such coexistence is managed.
Keywords MlBibTEX, Scheme, managing data formats.

Streszczenie

Pokazujemy główne funkcje implementacji MlBibTEX-a używaja֒cej Scheme.
Przede wszystkim umożliwia nam to podgla֒d jak sa֒ zorganizowane moduły i jak
uruchamiać różne cze֒śi MlBibTEX-a krok po kroku. Przypomnijmy, że MlBibTEX
obsługuje kilka formatów danych (składnie w odniesieniu do: TEX-a, plików bi-
bliograficznych, xml-a) i pokazujemy jak to osia֒gna֒ć.

Słowa kluczowe MlBibTEX, Scheme, zarza֒dzanie formatami danych.

Introduction

MlBibTEX—for ‘MultiLingual BibTEX’— is a reim-
plementation of BibTEX [19], the bibliography pro-
cessor associated with the LATEX word processor [15].
It extends BibTEX about multilingual features. As
explained in [6], MlBibTEX’s present version is based
on xml1 in the sense that parsing bibliography (.bib)
files result in an xml tree. MlBibTEX can use bib-
liography styles written using the bst language of
BibTEX [18] in compatibility mode [5]. However it is
preferable for MlBibTEX bibliography styles to take
as much advantage of nbst—for ‘New Bibliography
STyles’—as possible; we show how to proceed in
[10]. This ‘new’ language is an extension of xslt2

[24] with a kind of inheritance on language expres-
sions [6, 7].

In [8], we explained why we started up a new
implementation using the Scheme programming lan-
guage, after a first try using the C programming
language [13]. We describe how to install and use

1 eXtensibleMarkup Language. Readers interested in an
introduction it can refer to [21].
2 eXtensible Stylesheet Language Transformations.

this implementation hereafter. In the second sec-
tion (‘MlBibTEX in Scheme’), readers are assumed
to be quite familiar with the Scheme language and
can refer to [3, 22] for more details.

Disclaimer

The information given hereafter about MlBibTEX’s
installation is subject to change, because we are still
currently working on that. At the time of writing,
MlBibTEX’s Web page:

http://lifc.univ-fcomte.fr/~hufflen/texts/

mlbibtex/mlbibtex/

is still under construction, but more details about
the installation procedure and its possible improve-
ment will be reported over there.

Installation

Requirements As we explained in [9], to use the
present version of MlBibTEX (1.3), you need a work-
ing and recent version of (LA)TEX, of course, includ-
ing a recent version of the babel package [17, Ch. 9].
Some ad hoc packages are also in interface with our
program: french [4], german [20], polski [2, § F7].
MlBibTEX’s specific requirements are:

XIII Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 17

Polska Grupa Użytkowników Systemu TEX, 2005 (http://www.GUST.org.pl)



Jean-Michel HUFFLEN

(define bibliographystyle-pv

(let ((the-bibliographystyle #f))

(lambda (msg)

(cond ((eq? msg ’see) (lambda ()

(cond (the-bibliographystyle)

;; msg-manager is the function managing the display of
;; messages. It returns #f.
(else (msg-manager ’no-bibliographystyle)))))

((eq? msg ’set)

(lambda (stylename)

(cond (the-bibliographystyle (msg-manager ’bibliographystyle-already-set))

(else (set! the-bibliographystyle stylename)

stylename))))))))

Figure 1: A protected variable in MlBibTEX.

• an r5rs-compliant Scheme interpreter3 or com-
piler;

• to install the sxml4 library [14], available at the
Web address

http://pair.com/lisovsky/xml/ssax

(ssax-sxml is the better choice).

We have tested MlBibTEX:

• with mit Scheme and bigloo as Scheme inter-
preters;

• on Linux SuSE and Red Hat.

Distribution It consists of five directories:

doc contains the documentation (still under con-
struction);

latex groups the files containing the definition of ad-
ditional LATEX commands, in order for this word
processor to be able to process the files gener-
ated by MlBibTEX; examples of such files are
given in [9]; notice that when MlBibTEX’s in-
stallation is finished, you have to add this di-
rectory to the specification of the TEXINPUTS
environment variable, in order for LATEX to be
able to find these files;

nbst its subdirectories contain the predefined bibli-
ography styles; most of current styles of BibTEX
have been translated [10]; the organisation of
the different files for a bibliography style is ex-
plained in [9, 10];

obj the place where object files are placed when the
source files are compiled;

3 . . . and not r4rs-compliant, that is, based on [1].
MlBibTEX uses some new features of the last revision: hy-
gienic macros, functions returning multiple values and the
dynamic-wind function.
4 Scheme implementation of xml.

src contains the source files written in Scheme.

Some additional files are given:

configure.in configure Makefile.in

Now they are configured to use mit Scheme as a
compiler. In such a case, the installation is ‘classical’
for an Unix-like system:

• ./configure --prefix=...\
--with-sxml-library=...

prefix (resp. with-sxml-library) being set
to the directory where MlBibTEX’s distribution
(resp. sxml library) has been put, both default
to the /usr/local directory,

• make

compiles the files of the src directory and builds
an executable file mlbibtex, launching the main
function,

• make install
installs the mlbibtex file in a public directory.

You can use this executable file as follows:

mlbibtex job-name

where ‘job-name ’ is the name—with or without
suffix—of an auxiliairy (.aux) file. You can force
the use of the language of a document by:

mlbibtex job-name --language=...

but we do not recommend this feature: multilin-
gual functions are not used, so some parts of the re-
sulting text can be processed incorrectly by LATEX.
More generally, how languages are managed within
MlBibTEX will be described in [11].

Using source files in interpreted mode This
way should work with any Scheme interpreter, it
should also work on the Windows operating system.

• Edit the file src/config.scm and put the right
values for the variables:

18 Bachotek, 30 kwietnia – 3 maja 2005

Polska Grupa Użytkowników Systemu TEX, 2005 (http://www.GUST.org.pl)



MlBibTEX in Scheme

@INPROCEEDINGS{zemianski2002,
AUTHOR = {first => Andrzej,

last => Zemia\’{n}ski},
TITLE = {Waniliowe plantacje

Wroc{\l}awia},
BOOKTITLE = {Zajdel 2002},
EDITOR = {},
PAGES = {99--164},
PUBLISHER = {Fabryka Sl\’{o}w},
ADDRESS = {Lublin},
NOTE = {[Not yet translated in

English] ! english},
YEAR = 2002,

LANGUAGE = polish}

Figure 2: Example of MlBibTEX’s entry.

pl-mlbibtex the absolute address where the
distribution of MlBibTEX is located,

pl-sxml-library the absolute address where
sxml library is located.

• Launch a Scheme interpreter and load5 the file
src/pilot.scm.

• Now you can use the functions described in the
next section.

MlBibTEX in Scheme

Protected variables As far as possible, we want
to avoid direct side effects, that is, using the special
form set! at the top level. We take advantage of
lexical closures and unlimited extent in Scheme, and
use protected variables, close to objects within
an object-oriented approach. An example of such
a variable is given in Figure 1: we send messages
to the bibliographystyle-pv variable to see and
set the bibliography style used. We can see that
this style can be set only once, the side effect being
enclosed in the value of bibliographystyle-pv.
Here are information that is managed this way:

• the bibliography style,

• the name of the ‘log’ file for a job,

• the list of BibTEX keys cited throughout the
document whose we are building the ‘Refer-
ences’ section: bibtexkey-list-pv,

• the list of bibliography styles to be searched:
bibfile-list-pv.

So, if you consider the MlBibTEX entry given in Fig-
ure 2 and would like to add it to the list of keys cited,
unless it has already been included, just type:

5 That is, use the Scheme function load.

<mlbiblio>

<inproceedings id="zemianski2002"

language="polish">

<author>

<name>

<personname>

<first>Andrzej</first>

<last>Zemiański</last>

</personname>

</name>

</author>

>title>

Waniliowe plantacje

<asitis>Wrocławia</asitis>

</title>

<booktitle>Zajdel 2002</booktitle>

<publisher>Fabryka Slów</publisher>

<year>2002</year>

<pages>

<firstpage>99</firstpage>

<lastpage>164</lastpage>

</pages>

<note>

<group language="english">

Not yet translated in English

</group>

</note>

</inproceedings>

...

</mlbiblio>

Figure 3: The entry of Figure 4, using xml-like
syntax.

((bibtexkey-list-pv ’adjoin)

"zemianski2002")

and this expression returns the updated list of keys
cited. Similarly, evaluate:

((bibtexkey-list-pv ’remove)

"zemianski2002")

if you would like this key to be removed from the
list.

Prefixes for modules A drawback of Scheme is
the absence of modules6 or packages, w.r.t. the ter-
monology of Lisp7. That is why we are especially
careful to add a prefix to our functions’ names. Non-
prefixed names are:

6 Some interpreters provide them, but they have not been
included in standard Scheme.
7
LISt Processing. Lisp dialects— including Scheme—

are the successors of the language designed by John McCarthy
[16].

XIII Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 19

Polska Grupa Użytkowników Systemu TEX, 2005 (http://www.GUST.org.pl)



Jean-Michel HUFFLEN

(*top* (mlbiblio (inproceedings (@ (id "zemianski2002") (language "polish"))

(author (name (personname (first "Andrzej")

(last "Zemia\’{n}ski"))))
(title "Waniliowe plantacje Wroc{\l}awia")
(booktitle "Zajdel 2002") (publisher "Fabryka Slów")

(year "2002") (address "Lublin")

(pages (firstpage "99") (lastpage "164"))

(note (group (@ (language "english"))

"Not yet translated in English")))

...))

Figure 4: What MlBibTEX’s parser results in.

• the name of local variables and functions,

• the names of some functions and macros of gen-
eral interest, that is, usable outside MlBibTEX
(they are grouped in the file src/common.scm),

• the names of protected variables (but they end
with ‘-pv’, as shown by the abovementioned ex-
amples.

For example, all the functions of our parser of .bib
files (resp. TEX files) begin with ‘s-’ (resp. ‘t-’).

Using MlBibTEX Most often, MlBibTEX’s main
function can be used by:

(mlbibtex job-name)

more generally by:

(mlbibtex job-name . alist)

when ‘a-list’ is an associatlion list whose keys are
interface keywords for MlBibTEX, for example:

(mlbibtex job-name ’(language . "polish"))

—compare this expression to the second example
given in Subsection ‘Distribution’— this convention
is close to the keywords used in Common Lisp [23,
§ 5.2.2] or [12, § 8.3.1.4].

Parsers MlBibTEX uses the ssax
8 parser, included

in sxml [14]. It can be used by:

(define an-sxml-tree

(call-with-input-file input-file

(lambda (input-p)

(SSAX:XML->SXML input-p ’()))))

and, as described in [14], we can asj for a linear
list grouping all the parts addressed by an XPath
expression:

((sxpath an-XPath-expression)

an-xsml-tree)

There are two other parsers.

8
Scheme implementation of sax (Simple api for xml,

cf. [21, pp. 289–291]).

• the parser of .bib files, resulting in sxml trees:

(s-parse-bib-file-list bib-file-list)

uses the value enclosed by the protected vari-
able bibtexkey-list-pv to match the right en-
tries. For one .bib file, the function to call is:

(s-parse-bib-file bib-file)

• the parsers of files written w.r.t. TEX’s syntax,
they are used to parse .aux files:

(t-parse-aux-file aux-filename)

and to parse the preamble of a source file, in
order to know which multilingual packages are
used:

(t-parse-tex-preamble tex-filename)

These both parsers are derived from a common basis
sketched in Figure 5.
If bibtexkey-list-pv contains an empty list

of keys, the complete list of entries is returned. If
you consider the entry given in Figure 2, the result
of our parser is displayed in Figure 4. To display it
using an xml-like syntax, do:

((xml-file ’from-sxml-tree) an-sxml-tree)

Acknowledgements

Many thanks to Paweł D. Mogielnicki, who has writ-
ten the Polish translation of the abstract.

References

[1] William D. Clinger, Jonathan A. Rees,
Harold Abelson, Norman I. Adams iv,
David H. Bartley, Gary Brooks, R. Kent
Dybvig, Daniel P. Friedman, Robert
Halstead, Chris Hanson, Christopher T.
Haynes, Eugene Edmund Kohbecker,
Jr., Donald Oxley, Kent M. Pitman,
Guillermo Juan Rozas, Guy Lewis Steele,
Jr., Gerald Jay Sussman and MitchellWand:

20 Bachotek, 30 kwietnia – 3 maja 2005

Polska Grupa Użytkowników Systemu TEX, 2005 (http://www.GUST.org.pl)



MlBibTEX in Scheme

(define (parsers-make-launching filename launcher)

;; launcher is the function that rules the analysis of the input file. Its arguments are the function
;; going forward through the file and the function managing errors.
(call-with-current-continuation (lambda (parser-exit-c)

(parsers-filename-rp-loop filename launcher

parser-exit-c))))

(define (parsers-filename-rp-loop filename launcher parser-exit-c)

(let ((input-p ’*dummy-value*))

(dynamic-wind

;; Even if the launcher function encounters errors, the input port is closed.
(lambda () (set! input-p (open-input-file filename)))

(lambda () (launcher (make-r-thunk input-p) parser-exit-c))

(lambda () (close-output-port input-p)))))

(define (make-r-thunk input-p)

;; The result is a thunk (0-argument function) that moves forward through the input file.
(lambda () (read-char input-p)))

(define (make-x-function parser-exit-c)

;; The result is a function that displays an error message, and stops reading the input file.
(lambda (msg-idf)

(msg-manager msg-idf)

(parser-exit-c #f)))

Figure 5: Basic functions to build MlBibTEX’s parsers.

“Revised Report4 on the Algorithmic Language
Scheme”. acm Lisp Pointers, Vol. 4, no. 3.
July 1991.

[2] Antoni Diller: LATEX wiersz po wierszu. Wy-
dawnictwo Helio, Gliwice. Polish translation of
LATEX Line by Line with an additional annex
by Jan Jelowicki. 2001.

[3] R. Kent Dybvig: The Scheme Programming
Language. ansi Scheme. 2nd edition. Prentice-
Hall. 1996.

[4] Bernard Gaulle : Notice d’utilisation du style
french multilingue pour LATEX. Version pro
V5.01. Janvier 2001. CTAN:loria/language/
french/pro/french/ALIRE.pdf.

[5] Jean-Michel Hufflen: “Mixing Two Bibliog-
raphy Style Languages”. In: ldta 2003, Vol.
82.3 of entcs. Elsevier, Warsaw, Poland. April
2003.

[6] Jean-Michel Hufflen: “European Bibliogra-
phy Styles and MlBibTEX”. tugboat, Vol. 24,
no. 3, p. 489–490. EuroTEX 2003, Brest, France.
June 2003.

[7] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. tugboat, Vol. 24, no. 2, p. 249–262. July
2003.

[8] Jean-Michel Hufflen: “A Tour around
MlBibTEX and Its Implementation(s)”. Biule-
tyn gust, Vol. 20, p. 21–28. In BachoTEX 2004
conference. April 2004.

[9] Jean-MichelHufflen: “Making MlBibTEX Fit
for a Particular Language. Example of the Pol-
ish Language”. Biuletyn gust, Vol. 21, p. 14–
26. 2004.

[10] Jean-Michel Hufflen: “Bibliography Styles
Easier with MlBibTEX”. In: EuroTEX 2005
conference, program and preprints, p. 106–119.
Pont-à Mousson, France. March 2005.

[11] Jean-Michel Hufflen: Managing Languages
within MlBibTEX. Will be presented at
PracTEX conference, Chapel Hill, North Car-
olina. June 2005.

[12] International Standard iso/iec 10179:1996(e):
dsssl. 1996.

[13] Brian W. Kernighan and Denis M. Ritchie:
The C Programming Language. 2nd edition.
Prentice Hall. 1988.

[14] Oleg Kiselyov and Kirill Lisovsky: “xml,
XPath, xslt Implementations as sxml, SXPath,
and sxslt”. In: International Lisp Conference
2002. San Francisco, California. October 2002.

XIII Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 21

Polska Grupa Użytkowników Systemu TEX, 2005 (http://www.GUST.org.pl)



Jean-Michel HUFFLEN

[15] Leslie Lamport: LATEX. A Document Prepa-
ration System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[16] John McCarthy: “Recursive Functions of
Symbolic Expressions and Their Computation
by Machine, Part I”. Communications of the
ACM, Vol. 3, no. 4, p. 184–195. April 1960.

[17] Frank Mittelbach, Michel Goossens,
Joannes Braams, David Carlisle, Chris A.
Rowley, Christine Detig and Joachim
Schrod: The LATEX Companion. 2nd edi-
tion. Addison-Wesley Publishing Company,
Reading, Massachusetts. August 2004.

[18] Oren Patashnik: Designing BibTEX Styles.
February 1988. Part of BibTEX’s distribution.

[19] Oren Patashnik: BibTEXing. February 1988.
Part of BibTEX’s distribution.

[20] Bernd Raichle: Die Makropakete „german“
und „ngerman“ für LATEX 2ε, LATEX 2.09,
Plain-TEX and andere darauf Basierende For-
mate. Version 2.5. Juli 1998. Im Software
LATEX.

[21] Erik T. Ray: Learning xml. O’Reilly & Asso-
ciates, Inc. January 2001.

[22] George Springer and Daniel P. Friedman:
Scheme and the Art of Programming. The mit
Press, McGraw-Hill Book Company. 1989.

[23] Guy Lewis Steele, Jr., Scott E. Fahlman,
Richard P. Gabriel, David A. Moon,
Daniel L. Weinreb, Daniel Gureasko Bo-
brow, Linda G.DeMichiel, Sonya E.Keene,
Gregor Kiczales, Crispin Perdue, Kent M.
Pitman, Richard Waters and Jon L White:
Common Lisp. The Language. Second Edition.
Digital Press. 1990.

[24] W3C: xsl Transformations (xslt). Ver-
sion 1.0. w3c Recommendation. Edited by
James Clark. November 1999. http://www.w3.
org/TR/1999/REC-xslt-19991116.

22 Bachotek, 30 kwietnia – 3 maja 2005

Polska Grupa Użytkowników Systemu TEX, 2005 (http://www.GUST.org.pl)


