
Designing an implementation language for a TEX successor

David Kastrup
dak@gnu.org

Abstract

Managing the complexity of TEX’s codebase is an arduous task, so arduous that
few mortals can hope to manage the underlying complexity. Its original author’s
computational roots date back to a time where the maturity and expressive power
of existing programming languages was such that he chose to employ the assem-
bly language of a fictional processor for the examples in his seminal work “The
Art of Computer Programming”. In a similar vein, TEX is written in a stripped-
down subset of a now-extinct Pascal dialect. Current adaptations of the code
base include more or less literal translations into Java (NTS and exTeX), C++
(the Omega-2.0 codebase), mechanically generated C (web2c) and a few others.
In practically all currently available cases, the data structures and control flow
and overall program structure mimick the original program to a degree that again
requires the resourcefulness of a highly skilled programmer to manage its com-
plexity. As a result, almost all of those projects have turned out to be basically
single-person projects, and few projects have shown significant progress beyond
providing an imitation of TEX.

It is the persuasion of the author that progressing significantly beyond the
state of the art as represented by TEX will require the expressiveness and ease
of use of a tailor-made implementation and extension language. Even a language
as thwarted as Emacs Lisp has, due to its conciseness, rapid prototyping nature,
extensibility and custom data types and its coevolution with the Emacs editor
itself, enabled progress and add-ons reaching far beyond the original state as
conceived by its original authors. This talk tries to answer the question what
basic features an implementation platform and language for future typesetting
needs should possess.

XIII Ogólnopolska Konferencja Polskiej Grupy Użytkowników Systemu TEX 71

Polska Grupa Użytkowników Systemu TEX, 2005 (http://www.GUST.org.pl)


