Document Object Model (DOM) Level 3 Events Specification

W3C

I~

Document Object Model (DOM) Level 3 Events
Specification

Version 1.0

W3C Working Draft 08 February 2002

This version:
[http://mvww.w3.org/TR/2002/WD-DOM-Level-3-Events-20020P08
(PostScripfile| ,[PDFfile|,[plaintext, [ZIP file] ,|single HTML file)

Latest version:

[http://wvww.w3.org/TR/DOM-Level-3-Events

Previous version:

[http://mvww.w3.0rg/TR/2001/WD-DOM-Level-3-Events-20010823

Editor:
Tom Pixley,Netscape Communications Corporation

[Copyright©2002W3d® (MIT} [I[NRIA] [Keid), All Rights Reserved. W3lEability] frademarlfdocument
uséandsoftwarelicensingrulesapply.

Abstract

This specification defines the Document Object Model Events Level 3, a platform- and language-neutral
interface that allows programs and scripts to dynamically access and update the content, structure and
style of documents. The Document Object Model Events Level 3 builds on the Document Object Model
Events Level 2IDOM Level 2Event§.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may
super sede this document. The latest status of this document seriesis maintained at the W3C.

This document contains the Document Object Model Level 3 Egpatsfication.

This is a Working Draft for review by W3C members and other intergstes.

http://www.w3.org/
http://www.w3.org/TR/2002/WD-DOM-Level-3-Events-20020208
http://www.w3.org/TR/2002/WD-DOM-Level-3-Events-20020208/DOM3-Events.ps
http://www.w3.org/TR/2002/WD-DOM-Level-3-Events-20020208/DOM3-Events.pdf
http://www.w3.org/TR/2002/WD-DOM-Level-3-Events-20020208/DOM3-Events.txt
http://www.w3.org/TR/2002/WD-DOM-Level-3-Events-20020208/DOM3-Events.zip
http://www.w3.org/TR/2002/WD-DOM-Level-3-Events-20020208/DOM3-Events.html
http://www.w3.org/TR/DOM-Level-3-Events
http://www.w3.org/TR/2001/WD-DOM-Level-3-Events-20010823/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice-20000612#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720

Table of contents

It isadraft document and may be updated, replaced or obsoleted by other documents at any time. Itis
inappropriate to use W3C Working Drafts as reference materia or to cite them as other than "work in
progress’. Thisiswork in progress and does not imply endorsement by, or the consensus of, either W3C
or members of the DOM Working Group.

Comments on this document are invited and are to be sent to the public mailing list www-dom@w3.org.
An archiveis available at |http://lists.w3.org/Archives/Public/www-dom/|

This document has been produced as part of the|W3C DOM Activity} The authors of this document are
the DOM Working Group members.

A list of [current W3C Recommendations and other technical documentq can be found at

http://mww.w3.0rg/TR.

Table of contents

|[Expanded Table of Contentq
|Copyright Noticq .

|1. Document Object Model Eventy .

[Appendix A: Changeq

[Appendix B: IDL Definitiond

[Appendix C: Java Lanquage Binding|
[Appendix D: ECMA Script Language Binding

47
53
59
67
69
71

http://lists.w3.org/Archives/Public/www-dom/
http://www.w3.org/DOM/Activity.html
http://www.w3.org/TR/

Expanded Table of Contents

Expanded Table of Contents

|[Expanded Table of Contenty

|Copyright Noticq .
[W3C Document Copynqht Notl ce and Llcensel
[W3C Software Copyright Notice and Licensd

|1. Document Object Model Eventy . .
[1.1. Overview of the DOM Level 3 Event Modell
[1.1.1. Terminology]
|1.2. Description of event flow] .
[1.2.1. Event listeners activation
[1.2.2. Event capturd .
|1.2.3. Event bubbling
[1.2.4. Event cancelation|
[1.2.5. EventListener Grouping .
[1.3. Event listener registration| . .
[1.3.1. Event registration interfaceq . .
[1.3.2. Interaction with HTML 4.0 event Ilstenersl .
|1.4. Basic interfaced
[1.4.1. Event creation .
[1.5. Event module definitiony .
|1.5.1. User Interface event typeq
[1.5.2. Mouse event typeq .
|1.5.3. Text eventy .
|1.5.4. Mutation event typeq
[1.5.5. HTML event typeq .

[Appendix A: Changed

|A.1. Changes between DOM Level 2 Events and DOM Level 3 Eventsl

|A.1.1. Changesto DOM Level 2 Events interfaceq
[A.1.2. New Interfaceq
[Appendix B: IDL Definitiond
[Appendix C: Java Langquage Binding|
IAppendix D: ECMA Script Language Binding
Referenc .
[1. Normative referencesl
[2. Informative referenceq .
I ndex|

o v 0w

© © ©

10
10
10
11
11
12
12
12
18
18
21
23
23
25
29
36
39
41

45
45
45

47
53
59
67
69
69
69
71

Expanded Table of Contents

Copyright Notice

Copyright Notice

Copyright © 2002World Wide Web Consortium] (Massachusetts Institute ofTechnology [Institut]
[National de Recherche en Informatique et eAutomatique] [Keio University). All Rights Reserved.

This document is published under fiM8C Document Copyright Notice alhttensg[p.5] . The bindings

within this document are published under[ii@C Software Copyright Notice amdcens¢[p.6] . The

software license requires "Notice of any changes or modifications to the W3C files, including the date
changes were made." Consequently, modified versions of the DOM bindings must document that they do
not conform to the W3C standard; in the case of the IDL definitions, the pragma prefix can no longer be
'w3c.org’; in the case of the Java language binding, the package names can no longer be in the 'org.w3c’
package.

W3C Document Copyright Notice andLicense

Note: This section is a copy of the W3C Document Notice and License and could be found at
|http://www.w3.org/Consortium/Legal/copyright-documents-1999p405

Copyright © 1994-2004World Wide Web Consortium] (Massachusetts Institute ofTechnology,
[Institut National de Recherche en Informatique et erAutomatique} [Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

Public documents on the W3C site are provided by the copyright holders under the following license. The
software or Document Type Definitions (DTDs) associated with W3C specifications are governed by the
[SoftwareNoticg By using and/or copying this document, or the W3C document from which this

statement is linked, you (the licensee) agree that you have read, understood, and will comply with the
following terms andonditions:

Permission to use, copy, and distribute the contents of this document, or the W3C document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted,
provided that you include the following éh.L copies of the document, or portions thereof, thatusm

1. Alink or URL to the original W3C document.
2. The pre-existing copyright notice of the original author, or if it doesn't exist, a notice of the form:

"Copyright © [$date-of-documern/orld Wide WebConsortium (Massachusetts Institute jof
[Technolog)/[institut National de Recherche en Informatique eAetomatiquéKeio University).

All Rights Reserved. http://www.w3.org/Consortium/Legal/" (Hypertext is preferred, but a textual
representation is permitted.)
3. If it exists, the STATUS of the W3@ocument.

When space permits, inclusion of the full text of tRBTICE should be provided. We request that
authorship attribution be provided in any software, documents, or other items or products that you create
pursuant to the implementation of the contents of this document, or any poetieaf.

http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/copyright-software.html
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/

W3C Software Copyright Notice and License

No right to create modifications or derivatives of W3C documents is granted pursuant to this license.
However, if additional requirements (documented ifGbpyrightFAQ) are satisfied, the right to create
modifications or derivatives is sometimes granted by the W3C to individuals complying with those
requirements.

THIS DOCUMENT IS PROVIDED "AS 1S," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHERRIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTBHEREOF.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyridhlders.

W3C Software Copyright Notice andLicense

Note: This section is a copy of the W3C Software Copyright Notice and License and could be found at
[http:/iwvww.w3.org/Consortium/Legal/copyright-software-19980720

Copyright © 1994-2004World Wide Web Consortium] (Massachusetts Institute ofTechnology
[Institut National de Recherche en Informatique et erAutomatique} [Keio University). All Rights
Reserved.

http://www.w3.org/Consortium/Legal/

This W3C work (including software, documents, or other related items) is being provided by the copyright
holders under the following license. By obtaining, using and/or copying this work, you (the licensee)
agree that you have read, understood, and will comply with the following terneemditions:

Permission to use, copy, and modify this software and its documentation, with or without modification,
for any purpose and without fee or royalty is hereby granted, provided that you include the following on
ALL copies of the software and documentation or portions thereof, including modifications, that you
make:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.
2. Any pre-existing intellectual property disclaimers. If none exist, then a notice of the following form:

"Copyright © [$date-of-softwar§Vorld Wide WebConsortiunh (Massachusetts Institute Jof
[Technologl/[institut National de Recherche en Informatique eAetomatiquéKeio University).

All Rights Reserved. http://www.w3.org/Consortium/Legal/."

http://www.w3.org/Consortium/Legal/IPR-FAQ.html
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/

W3C Software Copyright Notice and License

3. Notice of any changes or modifications to the W3C files, including the date changes were made. (We
recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION ISPROVIDED "ASIS" AND COPYRIGHT
HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION
WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR
OTHER RIGHTS.

COPYRIGHT HOLDERSWILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR
DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to
the software without specific, written prior permission. Title to copyright in this software and any
associated documentation will at al times remain with copyright holders.

W3C Software Copyright Notice and License

1. Document Object Model Events

1. Document Object Model Events

Editor:
Tom Pixley, Netscape Communications Corporation

1.1. Overview of the DOM Level 3 Event Model

The DOM Level 3 Event Modd is designed with two main goals. Thefirst goal isthe design of a generic
event system which allows registration of event handlers, describes event flow through atree structure,
and provides basic contextual information for each event. Additionally, the specification will provide
standard modules of events for user interface control and document mutation notifications, including
defined contextua information for each of these event modules.

The second goal of the event model isto provide a common subset of the current event systems used in
[p.67] browsers. Thisisintended to foster interoperability of existing scripts and content. It
is not expected that this goal will be met with full backwards compatibility. However, the specification
attempts to achieve this when possible.

The following sections of the Event Model specification define both the specification for the DOM Event
Model and a number of conformant event modul es designed for use within the model. The Event Model
consists of the two sections on event propagation and event listener registration and the Event interface.

A DOM application may usethe hasFeat ur e(f eat ure, versi on) method of the

DOM npl enent at i on interface with parameter values "Events' and "3.0" (respectively) to determine
whether or not the event module is supported by the implementation. In order to fully support this module,
an implementation must also support the "Core" feature defined in the DOM Level 3 Core specification
[DOM Leve 3 Cord). Please, refer to additional information about [conformancdin the DOM Level 3 Core
specification [DOM Level 3 Corg]. The DOM Level 3 Event module is backward compatible with the
DOM Leve 2 Events [DOM Leve 2 Eventg module, i.e. aDOM Level 3 Eventsimplementation who
returnst r ue for "Events' with thever si on number " 3. 0" must asoreturnt r ue for thisf eat ur e
whenthever si on numberis"2. 0" ,"" or,nul I .

Each event module describes its own feature string in the event module listing.

1.1.1. Terminology

Ul events
User interface events. These events are generated by user interaction through an external device
(mouse, keyboard, etc.)

Ul Logical events
Device independent user interface events such as focus change messages or el ement triggering
notifications.

Mutation events
Events caused by any action which modifies the structure of the document.

http://www.w3.org/TR/DOM-Level-3-Core/introduction.html#ID-Conformance

1.2. Description of event flow

Capturing
The process by which an event can be handled by one of the event’ s target’ sfancestord [p.67] before
being handled by the event’ s target.

Bubbling
The process by which an event propagates upward through itsfancestord [p.67] after being handled by
the event’ starget.

Cancelable
A designation for events which indicates that upon handling the event the client may choose to
prevent the DOM implementation from processing any default action associated with the event.

1.2. Description of event flow

Event flow is the process through which the an event originates from the DOM implementation and is
passed into the Document Object Model. The methods of event capture and event bubbling, along with
various event listener registration techniques, allow the event to then be handled in a number of ways. It
can be handled locally at the[Event Tar get |[p.12] level or centrally from an|Event Tar get |higher in
the document tree. This resultsin three phasesin event flow: the event capture (CAPTURI NG_PHASE), at
the|Event Tar get |(AT_TARGET), and the event bubbling (BUBBLI NG_PHASE).

1.2.1. Event listeners activation

Each event hasan[Event Tar get |[p.12] toward which the event is directed by the DOM
implementation. This[Event Tar get]is specified in the[Event][p.18] st ar get attribute. When the
event reaches the target, any event listeners registered on the[Event Tar get]are triggered. Although all
[Event Li st ener s|[p.17] onthe|Event Tar get |are guaranteed to be triggered by any event which is
received by that Event Tar get , no specification is made as to the order in which they will receive the
event with regards to the other[Event Li st ener s|[p.17] onthe|Event Tar get |

Any exceptions thrown inside an|[Event Li st ener |[p.17] will not stop propagation of the event. It will
continue processing any additional [Event Li st ener]in the described manner.

It is expected that actions taken by [Event Li st ener|[p.17] s may cause additional eventsto fire.
Additional events should be handled in a synchronous manner and may cause reentrancy into the event
model.

1.2.2. Event capture

Event capture is the process by which an EventListener registered on an [p.67] of the event's
target can intercept events of a given type before they are received by the event’ starget. Capture operates
from the top of the tree, generally the Docunent , downward, making it the symmetrical opposite of
bubbling which is described below. The chain of [Event Tar get |[p.12] s from the top of the tree to the
event’ starget is determined before the initia dispatch of the event. If modifications occur to the tree
during event processing, event flow will proceed based on theinitia state of the tree.

10

1.2.3. Event bubbling

An[Event Li st ener|[p.17] being registered on an[Event Tar get |[p.12] may choose to have that
[Event Li st ener]capture events by specifying the useCapt ur e parameter of the

addEvent Li st ener method to bet r ue. Thereafter, when an event of the given type is dispatched
toward a[descendant] [p.67] of the capturing object, the event will trigger any capturing event listeners of
the appropriate type which exist in the direct line between the top of the document and the event’ s target.
This downward propagation continues until the event’ starget is reached. A capturing|Event Li st ener|
will not be triggered by events dispatched directly to the[Event Tar get Jupon which it is registered. Any
type of event can be captured.

If the capturing|Event Li st ener|[p.17] wishes to prevent further processing of the event from
occurring it may call the st opPr ogagat i on method of the[Event][p.18] interface. Thiswill prevent
further dispatch of the event, although additional [Event Li st ener s|registered at the same hierarchy
level will still receive the event. Once an event’sst opPr opagat i on method has been called, further
callsto that method have no additional effect. If no additional capturers exist and st opPr opagati on
has not been called, the event triggers the appropriate[Event Li st ener s|on the target itself.

Although event captureis similar to the delegation based event model in which all interested parties
register their listeners directly on the target about which they wish to receive notifications, it is different in
two important respects. First, event capture only alows interception of events which are targeted at

[p.67] of the capturing[Event Tar get][p.12] . It does not allow interception of events
targeted to the capturer’ sfancestord [p.67] , its[siblingd [p.67] , or its sibling’ s[descendantd[p.67] .
Secondly, event capture is not specified for asingle[Event Tar get| it is specified for a specific type of
event. Once specified, event capture intercepts all events of the specified type targeted toward any of the
capturer’ s[descendantg [p.67] -

1.2.3. Event bubbling

Events which are designated as bubbling will initially proceed with the same event flow as non-bubbling
events. The event is dispatched to itstarget|Event Tar get [[p.12] and any event listeners found there are
triggered. Bubbling events will then trigger any additional event listeners found by following the

[Event Tar get [s parent chain upward, checking for any event listeners registered on each successive
[Event Tar get | Thisupward propagation will continue up to and including the Docunent .

[Event Li st ener|[p.17] sregistered as capturers will not be triggered during this phase. The chain of
[Event Tar get sfrom the event target to the top of the tree is determined before the initial dispatch of the
event. If modifications occur to the tree during event processing, event flow will proceed based on the
initial state of the tree.

Any event handler may choose to prevent further event propagation by calling the st opPr opagat i on
method of the[Event][p.18] interface. If any[Event Li st ener][p.17] calls this method, all additional

[Event Li st ener s]on the current[Event Tar get][p.12] will be triggered but bubbling will cease at
that level. Only one call to st opPr opagat i on isrequired to prevent further bubbling.

11

1.3. Event listener registration

1.2.4. Event cancelation

Some events are specified as cancelable. For these events, the DOM implementation generally has a
default action associated with the event. An example of thisis a hyperlink in aWeb browser. When the
user clicks on the hyperlink the default action is generally to activate that hyperlink. Before processing
these events, the implementation must check for event listeners registered to receive the event and
dispatch the event to those listeners. These listeners then have the option of canceling the
implementation’ s default action or allowing the default action to proceed. In the case of the hyperlink in
the browser, canceling the action would have the result of not activating the hyperlink.

Cancelation is accomplished by calling the[Event][p.18] 'spr event Def aul t method. If one or more
[Event Li st ener s|[p.17] call pr event Def aul t during any phase of event flow the default action
will be canceled.

Different implementations will specify their own default actions, if any, associated with each event. The
DOM does not attempt to specify these actions.

1.2.5. EventListener Grouping

EventListener grouping is intended to allow groups of [Event Li st ener |[p.17] sto be registered which
will each have independent event flow within them which is not affected by changesto event flow in any
other group. This may be used to control events separately in multiple views on a document. It may also
be used to develop an application which uses events without the problem of possible interference by other
applications running within the same document.

The new methods added for EventListener grouping should not interfere with the non-groups methods.
For purposes of interoperability between the groups and non-groups methods, the implementation can be
assumed to define a default[Event G oup|[p.16] . This defaultEvent G oup]isimplicitly used in the
registration of all[Event Li st ener][p.17] s registered via methods which do not specify an
[Event G oup|(addEvent Li st ener, r enoveEvent Li st ener).

1.3. Event listener registration

1.3.1. Event registration interfaces
Interface EventTarget (introduced in DOM Level 2)

The Event Tar get interface isimplemented by all Nodes in an implementation which supports
the DOM Event Model. Therefore, this interface can be obtained by using binding-specific casting
methods on an instance of the Node interface. The interface allows registration and removal of

[Event Li st ener s|[p.17] on an Event Tar get and dispatch of eventsto that Event Tar get .

I DL Definition

12

1.3.1. Event registration interfaces

/1 Introduced in DOM Level 2:
interface [EventTar gef] {
voi d addEvent Li stener[in DOVBtring type,
in [EventListener]|listener,
i n bool ean useCapture);
voi d IrenoveEvent Li st enerfin DOVString type,
in|[EventListener]|listener,
i n bool ean useCapture);
bool ean ldi_ spat chEvent|i n [Event] evt)
rai ses(|[Event Exception);

/1 Introduced in DOM Level 3:

voi d laddG oupedEvent Li st ener[in DOVString type,
in|[EventLi stener]| listener,
i n bool ean useCapture,
in evt Group) ;

/1 Introduced in DOM Level 3:

voi d IrenbveG oupedEvent Li st enerfin DOVString type,
in [EventLi stener]|listener,
i n bool ean useCapture,
in evt Group);

// Introduced in DOM Level 3:

bool ean [canTrigger]in DOVBtring type);
/1 Introduced in DOM Level 3:
bool ean I sRegi steredHere[in DOVString type);
3
Methods

addEvent Li st ener
This method allows the registration of event listeners on the event target. If an
[Event Li st ener|[p.17] isadded to an Event Tar get whileit is processing an event,
the|Event Li st ener [will not be triggered by the current actions but may be triggered
during alater stage of event flow, such as the bubbling phase.
If multipleidentical [Event Li st ener|[p.17] s are registered on the same
Event Tar get with the same parameters the duplicate instances are discarded. They do
not cause the[Event Li st ener |to be called twice and since they are discarded they do
not need to be removed with ther enoveEvent Li st ener method.
Parameters
type of type DOVSt ri ng
The event type for which the user is registering
| i st ener of type[Event Li st ener|[p.17]
Thel i st ener parameter takes an interface implemented by the user which contains
the methods to be called when the event occurs.
useCapt ur e of typebool ean
If true, useCapt ur e indicates that the user wishes to initiate capture. After initiating
capture, al events of the specified type will be dispatched to the registered
[Event Li st ener |before being dispatched to any Event Tar get s beneath themin
the tree. Events which are bubbling upward through the tree will not trigger an
[Event Li st ener|designated to use capture.
No Return Value
No Exceptions

13

1.3.1. Event registration interfaces

addG oupedEvent Li st ener introduced in DOM Level 3
This method allows the registration of event listeners on the event target in the specified
group. If an[Event Li st ener|[p.17] isadded to an Event Tar get whileitis
processing an event, the[Event Li st ener]will not be triggered by the current actions,
independently of the event groups, but may be triggered during alater stage of event flow,
such as the bubbling phase.
If multipleidentical [Event Li st ener|[p.17] sareregistered on the same
Event Tar get with the same parameters the duplicate instances are discarded. They do
not cause the[Event Li st ener |to be called twice and since they are discarded they do
not need to be removed with ther enoveGr oupedEvent Li st ener method.
Parameters
t ype of type DOVSt ri ng
The event type for which the user isregistering
| i st ener of type[Event Li st ener|[p.17]
Thel i st ener parameter takes an interface implemented by the user which contains
the methods to be called when the event occurs.
useCapt ur e of typebool ean
If t r ue, useCapt ur e indicates that the user wishesto initiate capture. After
initiating capture, all events of the specified type will be dispatched to the registered
[Event Li st ener |before being dispatched to any Event Tar get s beneath themin
the tree. Events which are bubbling upward through the tree will not trigger an
[Event Li st ener|designated to use capture.
evt G oup of type[Event G oup][p.16]
The[Event G oup]to associate with the[Event Li st ener]
No Return Value

No Exceptions
canTri gger introduced in DOM Level 3
This method allows the DOM application to know if an event listener, attached to this
Event Tar get or one of its ancestors, will be triggered by the specified event type during
the dispatch of the event to this event target or one of its descendants.
Parameters
t ype of type DOVSt ri ng
The event type for which the[Event Li st ener|[p.17] isregistered.
Return Value

bool ean true if an event listener will be triggered on the event target with the
specified event type, f al se otherwise.

No Exceptions

di spat chEvent
This method allows the dispatch of events into the implementations event model. Events
dispatched in this manner will have the same capturing and bubbling behavior as events
dispatched directly by the implementation. The target of the event isthe Event Tar get
onwhichdi spat chEvent iscalled.
Parameters

14

1.3.1. Event registration interfaces

evt of type[Event][p.18]

Specifies the event type, behavior, and contextual information to be used in processing
the event.

Return Value

bool ean Thereturn value of di spat chEvent indicates whether any of the
listeners which handled the event called pr event Def aul t . If

prevent Def aul t wascalled thevalueisf al se, elsethevalueis
true.

Exceptions

[Event Exception] UNSPECIFIED EVENT_TYPE _ERR: Raised if the[Event]

[p.20] [p.18] 'stype was not specified by initializing the event before
di spat chEvent was called. Specification of the[Event[s
typeasnul | or an empty string will also trigger this
exception.

i SRegi st er edHer e introduced in DOM Level 3

This method alows the DOM application to know if this event target contains an event
listener registered for the specified event type. Thisis useful for determining at which
nodes within a hierarchy altered handling of specific event types has been introduced, but
should not be used to determine whether the specified event type triggers alistener (see
canTri gger).
Issue canTriggerOnTarget-useCapture:

do we need a useCapture parameter?

Resolution: No use case for that.
Parameters
t ype of type DOVSt ri ng

The event type for which the[Event Li st ener|[[p.17] isregistered.
Return Value

bool ean true if an event listener isregistered on this EventTarget for the
specified event type, f al se otherwise.

No Exceptions

renoveEvent Li st ener
This method allows the removal of event listeners from the event target. If an
[Event Li st ener|[p.17] isremoved from an Event Tar get whileit is processing an
event, it will not be triggered by the current actions.[Event Li st ener | can never be
invoked after being removed.
Cdlingr enoveEvent Li st ener with arguments which do not identify any currently

registered[Event Li st ener|[p.17] onthe Event Tar get has no effect.
Parameters

15

1.3.1. Event registration interfaces

t ype of type DOVSt ri ng

Specifies the event type of the[Event Li st ener|[p.17] being removed.
| i st ener of type[Event Li st ener][p.17]
The[Event Li st ener]parameter indicatesthe Event Li st ener to be removed.
useCapt ur e of typebool ean
Specifies whether the[Event Li st ener |being removed was registered as a capturing
listener or not. If alistener was registered twice, once with capture and once without,
each must be removed separately. Removal of a capturing listener does not affect a
non-capturing version of the same listener, and vice versa.
No Return Value
No Exceptions
renmove@ oupedEvent Li st ener introduced in DOM Level 3
This method allows the removal of event listeners from the event target. If an
[Event Li st ener|[p.17] isremoved from an Event Tar get whileit is processing an
event, it will not be triggered by the current actions, independently of the event groups.
[Event Li st enerJscan never be invoked after being removed.
Cdlingr enoveG oupedEvent Li st ener with arguments which do not identify any
currently registered|Event Li st ener|[p.17] onthe Event Tar get has no effect.
Parameters
t ype of type DOVSt ri ng

Specifies the event type of the[Event Li st ener|[p.17] being removed.

| i st ener of type[Event Li st ener][p.17]
The[Event Li st ener]parameter indicates the[Event Li st ener]to be removed.

useCapt ur e of typebool ean
Specifies whether the[Event Li st ener |being removed was registered as a capturing
listener or not. If alistener was registered twice, once with capture and once without,
each must be removed separately. Removal of a capturing listener does not affect a
non-capturing version of the same listener, and vice versa.

evt G oup of type[Event G oup][p.16]
The[Event G ouplto associate with the[Event Li st ener]

No Return Value

No Exceptions

I nterface EventGroup (introduced in DOM Level 3)

The EventGroup interface functions primarily as a placeholder for separating the event flows when
there are multiple groups of listenersfor aDOM tree.

[Event Li st ener][p.17] s can be registered without an Event Gr oup using the existing

[Event Tar get |[p.12] interface, or with an associated Event Gr oup using the new

Event Tar get G oup interface. When an event is dispatched, it is dispatched independently to
each Event G oup. In particular, the st opPr opagat i on method of the[Event][p.18] interface
only stops propagation within an[Event LI st ener [sassociated Event Gr oup.

|DL Definition

16

1.3.1. Event registration interfaces

/1 Introduced in DOM Level 3:
interface {
bool ean I_sSanmeEvent G oup[i n [Event G oup| ot her);

}s

Methods
i sSaneEvent G- oup
This method checks if the supplied Event Gr oup isthe same asthe Event G- oup upon
which the method is called.
Parameters
ot her of type[Event G oup|[p.16]
The Event G- oup with which to check equality.
Return Value

bool ean Returnstrueif the Event Gr oupsare equal, e sereturns false.

No Exceptions
I nterface EventListener (introduced in DOM Leve 2)

The Event Li st ener interface is the primary method for handling events. Users implement the
Event Li st ener interface and register their listener on an[Event Tar get |[p.12] using the
AddEvent Li st ener method. The users should also remove their Event Li st ener from its
[Event Tar get |after they have completed using the listener.

When aNode is copied using the cl oneNode method the Event Li st ener s attached to the
source Node are not attached to the copied Node. If the user wishes the same Event Li st ener sto
be added to the newly created copy the user must add them manually.

When aNode is adopted using the adopt Node method the Event Li st ener sattached to the
source Node stay attached to the adopted Node.

IDL Definition

// Introduced in DOM Level 2:
interface [EventListener] {

voi d lhandl eEvent|i n [Event]| evt);

b

Methods
handl eEvent

This method is called whenever an event occurs of the type for which the

Event Li st ener interface was registered.

Parameters

evt of type[Event][p.18]
The contains contextual information about the event. It also contains the
st opPr opagat i on and pr event Def aul t methodswhich are used in
determining the event’ s flow and default action.

No Return Value

No Exceptions

17

1.4. Basic interfaces

1.3.2. Interaction with HTML 4.0 event listeners

In HTML 4.0, event listeners were specified as attributes of an element. As such, registration of a second
event listener of the same type would replace the first listener. The DOM Event Model alows registration
of multiple event listenerson asingle[Event Tar get |[p.12] . To achieve this, event listeners are no
longer stored as attribute values.

In order to achieve compatibility with HTML 4.0, implementors may view the setting of attributes which
represent event handlers as the creation and registration of an Event Li st ener onthe[Event Tar get |
[p.12] . Thevalue of useCapt ur e defaultstof al se. This|Event Li st ener|[p.17] behavesin the
same manner as any other[Event Li st ener s|which may be registered on the|Event Tar get | If the
attribute representing the event listener is changed, this may be viewed as the removal of the previously
registered|Event Li st ener |and the registration of anew one. No techniqueis provided to allow HTML
4.0 event listeners access to the context information defined for each event.

1.4. Basicinterfaces
Interface Event (introduced in DOM Level 2)

The Event interface is used to provide contextual information about an event to the handler
processing the event. An object which implements the Event interfaceis generally passed asthe
first parameter to an event handler. More specific context information is passed to event handlers by
deriving additional interfaces from Event which contain information directly relating to the type of
event they accompany. These derived interfaces are also implemented by the object passed to the
event listener.

IDL Definition

// Introduced in DOM Level 2:
interface [Event] {

/1 PhaseType

const unsigned short CAPTURI NG_PHASE = 1;
const unsigned short AT_TARGET = 2;
const unsigned short BUBBLI NG_PHASE = 3;
readonly attribute DOVString Eypel

readonly attribute [Event Target [Farget

readonly attribute [Event Tar get lcurrent Target}
readonly attribute unsigned short [event Phase}

readonly attribute bool ean bubbl es

readonly attribute bool ean lcancel abl e

readonly attribute DOMIi meSt anmp [T meStanp}

voi d st opPr opagat i on|);

voi d [orevent Default)) ;

voi d [nitEveni)in DOVBtring event TypeArg,

i n bool ean canBubbl eAr g,
i n bool ean cancel abl eArg);

18

1.4. Basic interfaces

Definition group PhaseType
An integer indicating which phase of event flow is being processed.

Defined Constants
AT_TARGET
The event is currently being evaluated at the target[Event Tar get |[p.12] .
BUBBLI NG_PHASE
The current event phase is the bubbling phase.
CAPTURI NG_PHASE
The current event phase is the capturing phase.

Attributes
bubbl es of typebool ean, readonly
Used to indicate whether or not an event is a bubbling event. If the event can bubble the
valueistrue, elsethevaueisfase
cancel abl e of typebool ean, readonly
Used to indicate whether or not an event can have its default action prevented. If the
default action can be prevented the value is true, else the value isfalse.
current Tar get of type[Event Tar get|[p.12] , readonly
Used to indicate the[Event Tar get [[p.12] whose|Event Li st ener s|[p.17] are
currently being processed. Thisis particularly useful during capturing and bubbling.
event Phase of typeunsi gned short, readonly
Used to indicate which phase of event flow is currently being evaluated.
t ar get of type[Event Tar get|[p.12] , readonly
Used to indicate the[Event Tar get |[p.12] to which the event was originally dispatched.
t i meSt anp of type DOMTi meSt anp, readonly
Used to specify the time (in milliseconds relative to the epoch) at which the event was
created. Due to the fact that some systems may not provide this information the value of
ti meSt anp may be not available for all events. When not available, avalue of O will be
returned. Examples of epoch time are the time of the system start or 0:0:0 UTC 1st January
1970.
t ype of type DOVt r i ng, readonly
The name of the event (case-insensitive). The name must be an[XML namg [p.67] . On
retrieval, the name of the event isin lowercase.
Issue lowercase-1:
check implementation for lowercase.
Issue naming-1:
XML events might (will?) use { hamespaceURI,localName} to indicate the type of
eventsin the future. What should we do about it?

Methods
i ni t Event

Thei ni t Event method isused to initialize the value of an Event created through the
[Docunent Event |[p.21] interface. This method may only be called before the Event has
been dispatched viathe di spat chEvent method, though it may be called multiple times
during that phase if necessary. If called multiple timesthe final invocation takes
precedence. If called from asubclass of Event interface only the values specified in the
i ni t Event method are modified, all other attributes are left unchanged.

19

1.4. Basic interfaces

Parameters
event TypeAr g of type DOVt ri ng
Specifies the event type. Thistype may be any event type currently defined in this
specification or anew event type.. The string must be an[XML namg [p.67] .
Any new event type must not begin with any upper, lower, or mixed case version of
the string "DOM". This prefix is reserved for future DOM event sets. It isalso
strongly recommended that third parties adding their own events use their own prefix
to avoid confusion and lessen the probability of conflicts with other new events.
canBubbl eAr g of typebool ean
Specifies whether or not the event can bubble.
cancel abl eAr g of typebool ean
Specifies whether or not the event’ s default action can be prevented.
No Return Value
No Exceptions
prevent Def aul t
If an event is cancelable, the pr event Def aul t method is used to signify that the event
isto be canceled, meaning any default action normally taken by the implementation as a
result of the event will not occur. If, during any stage of event flow, the
pr event Def aul t method is called the event is canceled. Any default action associated
with the event will not occur. Calling this method for a non-cancelable event has no effect.
Oncepr event Def aul t hasbeen called it will remain in effect throughout the remainder
of the event’s propagation. This method may be used during any stage of event flow.
No Parameters
No Return Value
No Exceptions
st opPropagati on
Thest opPr opagat i on method is used to prevent further propagation of an event in the
current group during event flow (see aso|EventListener Grouping|[p.12]). If this method is
caled by any|[Event Li st ener|[p.17] the event will cease propagating in the current
group through the tree. The event will complete dispatch to all listeners on the current
[Event Tar get |[p.12] before event flow stops. This method may be used during any stage
of event flow.
No Parameters
No Return Value
No Exceptions
Exception EventException introduced in DOM Level 2

Event operations may throw an[Event Except 1 on|[p.20] as specified in their method descriptions.

IDL Definition

// Introduced in DOM Level 2:
exception [Event Exception] {
unsi gned short code;
}s
/| Event Excepti onCode
const unsigned short [ONSPECT FT ED EVENT TYPE ERR = 0;

20

1.4.1. Event creation

Definition group EventExceptionCode
An integer indicating the type of error generated.

Defined Constants
UNSPECI FI ED_EVENT _TYPE ERR

If the[Event][p.18] ' stype was not specified by initializing the event before the
method was called. Specification of the Event’stypeasnul | or an empty string will
also trigger this exception.

1.4.1. Event creation
I nterface DocumentEvent (introduced in DOM Level 2)

The Docunent Event interface provides a mechanism by which the user can create an Event of a
type supported by the implementation. It is expected that the Docunent Event interface will be
implemented on the same object which implements the Docunent interface in an implementation
which supports the Event model.

DL Definition

/1 Introduced in DOM Level 2:
interface [Docunent Event] {

Event [createEvent|in DOVBtring event Type)
rai ses(DOVExcepti on);
Event G oup lcr eat eEvent Group|) ;
3
Methods
creat eEvent
Parameters

event Type of type DOMSt ri ng
Theevent Type parameter specifies the type of [p.18] interface to be
created. If the[Event]interface specified is supported by the implementation this
method will return a new [Event] of the interface type requested. If the[Event]isto be
dispatched viathe di spat chEvent method the appropriate event init method must
be called after creation in order to initialize the[Event | s values. As an example, a
user wishing to synthesize some kind of [p.23] would call cr eat eEvent
with the parameter "UIEvents®. Thei ni t Ul Event method could then be called on
the newly created to set the specific type of UIEvent to be dispatched and
set its context information.
Thecr eat eEvent method is used in creating[Event][p.18] swhen it is either
inconvenient or unnecessary for the user to create an[Event |themselves. In cases
where the implementation provided isinsufficient, users may supply their own
Event |implementations for use with the di spat chEvent method. However, the
DOM implementation needs access to the attributes cur r ent Tar get and
event Phase of the[Event]interface to propagate appropriately the event in the
DOM tree. Therefore users[Ev ent]implementation might need to support the
[Cust onEvent |[p.22] for that effect.

21

1.4.1. Event creation

Return Value

[p.18] Thenewly created[Event]

Exceptions

DOVException NOT_SUPPORTED_ ERR: Raised if the implementation does not
support the type of [p.18] interface requested

creat eEvent G oup

This method creates anew[Event G oup][p.16] for usein the

addG oupedEvent Li st ener andr enoveG oupedEvent Li st ener methods of
thel[Event Tar get|[p.12] interface.

Return Value

[p.16] Thenewly created

No Parameters
No Exceptions
I nterface CustomEvent (introduced in DOM Level 3)

The Cust onEvent interface provides user defined events. It isintented to be used by the DOM
implementation to access the underlying while propagating the event in the tree. Both methods
should be call before invoking each event listener on the current target.

IDL Definition

// Introduced in DOM Level 3:

interface |CustonEvent] : [Event] {
voi d [EetCurrent Targei]in Node target);
voi d [Eet Event Phase] i n unsi gned short phase);
b
Methods

set Current Tar get

Theset Current Tar get method is used by the DOM implementation to change the

value of acur r ent Tar get attribute on the[Event][p.18] interface.
Parameters

t ar get of type Node
Specifiesthecur r ent Tar get attribute on the[Event][p.18] interface.
No Return Value
No Exceptions
set Event Phase
Theset Event Phase method is used by the DOM implementation to change the value

of aevent Phase attribute on the[Event][p.18] interface.
Parameters

22

1.5. Event module definitions

phase of typeunsi gned short

Specifies the event Pahse attribute on the[Event][p.18] interface.
No Return Value
No Exceptions

1.5. Event module definitions

The DOM Level 2 Event Model alows a DOM implementation to support multiple modules of events.
The model has been designed to allow addition of new event modules asis required. The DOM will not
attempt to define all possible events. For purposes of interoperability, the DOM will define amodule of
user interface eventsincluding lower level device dependent events, amodule of Ul logical events, and a
module of document mutation events. Any new event types defined by third parties must not begin with
any upper, lower, or mixed case version of the string "DOM". This prefix is reserved for future DOM
event modules. It is also strongly recommended that third parties adding their own events use their own
prefix to avoid confusion and lessen the probability of conflicts with other new events.

1.5.1. User Interface event types

The User Interface event module is composed of events listed in HTML 4.0 and additional events which

are supported in|DOM Level Q[p.67] browsers.

A DOM application may usethe hasFeat ur e(f eat ure, versi on) method of the

DOM npl enent at i on interface with parameter values "UlEvents' and "3.0" (respectively) to
determine whether or not the User Interface event module is supported by the implementation. In order to
fully support this module, an implementation must also support the "Events' feature defined in this
specification and the "Views' feature defined in the DOM Level 2 Views specification
[Viewg. Please, refer to additional information about [conformance in the DOM Level 3 Core specification
[DOM Level 3 Cordl. The DOM Level 3 User Interface Events module is backward compatible with the
DOM Level 2 User Interface Events [DOM Level 2 Eventd module, i.e. aDOM Level 3 User Interface
Eventsimplementation who returnst r ue for "UlEvents' with thever si on number " 3. 0" must also
returnt r ue for thisf eat ur e whenthever si on numberis” 2. 0","" or,nul I .

Note: To create an instance of the|Ul Event |[p.23] interface, use the feature string "UlEvents® asthe
value of the input parameter used with the cr eat eEvent method of the[Docunent Event |[p.21]
interface.

Interface Ul Event (introduced in DOM Level 2)

The Ul Event interface provides specific contextual information associated with User Interface
events.

IDL Definition

23

http://www.w3.org/TR/DOM-Level-3-Core/introduction.html#ID-Conformance

1.5.1. User Interface event types

/1 Introduced in DOM Level 2:
interface [U Event] : [Event] {
readonly attribute views::Abstract Vi ew i ew

readonly attribute |ong
voi d I nitU Event(in DOVString typeArg,

i n bool ean canBubbl eArg,
i n bool ean cancel abl eArg,
in views::AbstractView vi ewArg,
in long detail Arg);
3

Attributes
det ai | of typel ong, readonly
Specifies some detail information about the[Event][p.18] , depending on the type of event.
Vi ewof typevi ews: : Abst ract Vi ew, readonly
Thevi ewattribute identifiesthe Abst r act Vi ewfrom which the event was generated.
Methods
i nitU Event
Thei ni t U Event method is used to initialize the value of aUl Event created through
the|Docunent Event [[p.21] interface. This method may only be called before the
Ul Event has been dispaiched viathedi spat chEvent method, though it may be called
multiple times during that phase if necessary. If called multiple times, the final invocation
takes precedence.
Parameters
t ypeAr g of type DOVSt ri ng
Specifies the event type.
canBubbl eAr g of typebool ean
Specifies whether or not the event can bubble.
cancel abl eAr g of typebool ean
Specifies whether or not the event’ s default action can be prevented.
Vi ewAr g of typevi ews: : Abstract Vi ew
Specifiesthe[Event|[p.18] s Abst r act Vi ew.
det ai | Arg of typel ong
Specifiesthe[Event|[p.18] 's detail.
No Return Value
No Exceptions

The different types of such eventsthat can occur are:

DOMFocusin
The DOMFocusln event occurs when an[Event Tar get [[p.12] receives focus, for instance viaa
pointing device being moved onto an element or by tabbing navigation to the element. Unlike the
HTML event focus, DOMFocusln can be applied to any focusable|Event Tar get |}, not just FORM
controls.

® Bubbles: Yes
® Cancelable: No
® Context Info: None

24

1.5.2. Mouse event types

DOM FocusOut
The DOM FocusOut event occurs when alEvent Tar get |[p.12] loses focus, for instance viaa
pointing device being moved out of an element or by tabbing navigation out of the element. Unlike
the HTML event blur, DOM FocusOut can be applied to any focusable[Event Tar get | not just
FORM contrals.

® Bubbles: Yes
® Cancelable: No
® Context Info: None
DOMActivate
The activate event occurs when an element is activated, for instance, thru amouse click or a
keypress. A numerical argument is provided to give an indication of the type of activation that

occurs. 1 for asimple activation (e.g. asimple click or Enter), 2 for hyperactivation (for instance a
double click or Shift Enter).

® Bubbles: Yes
® Cancelable: Yes
® Context Info: detail (the numerical value)

1.5.2. Mouse event types

The Mouse event module is composed of eventslisted in HTML 4.0 and additional events which are

supported in[DOM Level Q[p.67] browsers. This event module is specifically designed for use with mouse
input devices.

A DOM application may usethe hasFeat ur e(f eat ure, versi on) method of the

DOM npl erent at i on interface with parameter values "MouseEvents' and "3.0" (respectively) to
determine whether or not the Mouse event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "UlEvents' feature defined in this
specification. Please, refer to additional information about [conformancein the DOM Level 3 Core
specification [DOM Level 3 Corgl. The DOM Level 3 Mouse Events module is backward compatible with
the DOM Level 2 Mouse Events [DOM Level 2 Eventd module, i.e. aDOM Level 3 Mouse Events
implementation who returnst r ue for "MouseEvents' with thever si on number " 3. 0" must also
returnt r ue for thisf eat ur e whenthever si on numberis"2. 0","" or,nul I .

Note: To create an instance of the [p.25] interface, use the feature string "MouseEvents' as
the value of the input parameter used with thecr eat eEvent method of the[Docunent Event |[p.21]
interface.

I nterface MouseEvent (introduced in DOM Level 2)
The MouseEvent interface provides specific contextual information associated with Mouse events.

Thedet ai | attribute inherited from[Ul Event][p.23] indicates the number of times a mouse button
has been pressed and rel eased over the same screen location during a user action. The attribute value
is 1 when the user begins this action and increments by 1 for each full sequence of pressing and
releasing. If the user moves the mouse between the mousedown and mouseup the value will be set to
0, indicating that no click is occurring.

25

http://www.w3.org/TR/DOM-Level-3-Core/introduction.html#ID-Conformance

1.5.2. Mouse event types

In the case of nested elements mouse events are always targeted at the most deeply nested element.
Ancestors of the targeted element may use bubbling to obtain notification of mouse events which
occur within its descendent elements.

IDL Definition

// Introduced in DOM Level 2:
i nterface [MouseEvent| : |U Event] {

readonly attribute |ong lscreen
readonly attribute |ong [screeny
readonly attribute |ong [cTTent X
readonly attribute |ong [cTTentY
readonly attribute bool ean [ctrTKey
readonly attribute bool ean [EhiftKe
readonly attribute bool ean [T Keyl
readonly attribute bool ean [met aKey}
readonly attribute unsigned short [button}
readonly attribute [Event Tar get| [felat edTar get}

DOVBt ri ng typeArg,

bool ean canBubbl eAr g,

bool ean cancel abl eAr g,

vi ews: : Abstract Vi ew vi ewAr g,
| ong detail Arg,

| ong screenXArg,

| ong screenYAr g,

I ong cli ent XAr g,

I ong cli ent YArg,

bool ean ctrl KeyArg,

bool ean al t KeyAr g,

bool ean shi ftKeyArg,

bool ean net aKeyAr g,

unsi gned short buttonArg,
rel at edTar get Arg) ;

voi d [[nit MouseEvent| i

50D 3 00003 00303033 3 35 5

}s

Attributes

al t Key of typebool ean, readonly
Used to indicate whether the ' alt’ key was depressed during the firing of the event. On
some platforms this key may map to an aternative key name.

but t on of typeunsi ghed short, readonly
During mouse events caused by the depression or release of a mouse button, but t on is
used to indicate which mouse button changed state. The values for but t on range from
zero to indicate the left button of the mouse, one to indicate the middle button if present,
and two to indicate the right button. For mice configured for left handed use in which the
button actions are reversed the values are instead read from right to left.

cl i ent Xof typel ong, readonly
The horizontal coordinate at which the event occurred relative to the DOM
implementation’s client area.

clientYof typel ong, readonly
The vertica coordinate at which the event occurred relative to the DOM implementation’s
client area.

26

1.5.2. Mouse event types

ctrl Key of typebool ean, readonly
Used to indicate whether the ' ctrl’ key was depressed during the firing of the event.
nmet aKey of typebool ean, readonly
Used to indicate whether the ' meta’ key was depressed during the firing of the event. On
some platforms this key may map to an aternative key name.
rel at edTar get of type[Event Tar get|[p.12] , readonly
Used to identify a secondary[Event Tar get][p.12] related to a Ul event. Currently this
attribute is used with the mouseover event to indicate the|[Event Tar get |which the
pointing device exited and with the mouseout event to indicate the[Event Tar get]which
the pointing device entered.
screenXof typel ong, readonly
The horizontal coordinate at which the event occurred relative to the origin of the screen
coordinate system.
screenY of typel ong, readonly
The vertical coordinate at which the event occurred relative to the origin of the screen
coordinate system.
shi f t Key of typebool ean, readonly
Used to indicate whether the * shift” key was depressed during the firing of the event.
Methods
i ni t MouseEvent
Thei ni t MouseEvent method isused to initiaize the value of aMouseEvent created
through the[Docunent Event |[p.21] interface. This method may only be called before the
MouseEvent has been dispatched viathe di spat chEvent method, though it may be
called multiple times during that phase if necessary. If called multiple times, the final
invocation takes precedence.
Parameters
t ypeAr g of type DOVBt r i ng
Specifies the event type.
canBubbl eAr g of typebool ean
Specifies whether or not the event can bubble.
cancel abl eAr g of typebool ean
Specifies whether or not the event’ s default action can be prevented.
Vi ewAr g of typevi ews: : Abstract Vi ew
Specifies the[Event][p.18] 'sAbst r act Vi ew.
det ai | Arg of typel ong
Specifies the[Event][p.18] 's mouse click count.
screenXAr g of typel ong
Specifies the[Event][p.18] 's screen x coordinate
screenYAr g of typel ong
Specifies the[Event][p.18] 's screen y coordinate
cl i ent XAr g of typel ong
Specifiesthe[Event][p.18] 'sclient x coordinate
cl i ent YAr g of typel ong
Specifies the[Event][p.18] 'sclient y coordinate
ctrl KeyAr g of typebool ean
Specifies whether or not control key was depressed during the[Event][p.18] .

27

1.5.2. Mouse event types

al t KeyAr g of typebool ean

Specifies whether or not alt key was depressed during the[Event][p.18] .
shi f t KeyAr g of typebool ean

Specifies whether or not shift key was depressed during the[Event][p.18] .
nmet aKeyAr g of typebool ean

Specifies whether or not meta key was depressed during the[Event][p.18] .
but t onAr g of typeunsi gned short

Specifies the[Event][p.18] 's mouse button.
rel at edTar get Ar g of type[Event Tar get |[p.12]

Specifies the[Event][p.18] 'srelated[Event Tar get]
No Return Value

No Exceptions

The different types of Mouse events that can occur are:

click
The click event occurs when the pointing device button is clicked over an element. A click is defined
as amousedown and mouseup over the same screen location. The sequence of these eventsis:

nousedown
nouseup
click

If multiple clicks occur at the same screen location, the sequence repeats with thedet ai | attribute
incrementing with each repetition. Thisevent isvalid for most elements.
® Bubbles: Yes
® Cancelable: Yes
® Context Info: screenX, screeny, clientX, clientY, altKey, ctriKey, shiftkey, metaKey, button,
detail, view
mousedown
The mousedown event occurs when the pointing device button is pressed over an element. This event
isvalid for most elements.
® Bubbles: Yes
® Cancelable: Yes
e Context Info: screenX, screenY, clientX, clientY, atKey, ctrikey, shiftkKey, metaK ey, button,
detail, view
mouseup
The mouseup event occurs when the pointing device button is released over an element. Thisevent is
valid for most elements.
® Bubbles: Yes
® Cancelable: Yes
e Context Info: screenX, screeny, clientX, clientY, altKey, ctriKey, shiftkey, metaKey, button,
detail, view
mouseover
The mouseover event occurs when the pointing device is moved onto an element. This event isvalid
for most elements.
® Bubbles: Yes

28

1.5.3. Text events

® Cancelable: Yes
® Context Info: view, screenX, screenY, clientX, clientY, atKey, ctriKey, shiftkey, metaKey,
relatedTarget indicates the[Event Tar get |[p.12] the pointing device is exiting.
mousemove
The mousemove event occurs when the pointing device is moved whileiit is over an element. This
event isvalid for most elements.
® Bubbles: Yes
® Cancelable: No
® Context Info: view, screenX, screenY, clientX, clientY, atKey, ctriIKey, shiftkey, metaKey
mouseout
The mouseout event occurs when the pointing device is moved away from an element. Thisevent is
valid for most elements..
® Bubbles: Yes
® Cancelable: Yes
® Context Info: view, screenX, screenY,, clientX, clientY, atKey, ctriKey, shiftkey, metaKey,
relatedTarget indicates the|[Event Tar get [[p.12] the pointing device is entering.

1.5.3. Text events

A DOM application may usethe hasFeat ur e(f eat ure, versi on) method of the

DOM npl enment at i on interface with parameter values "TextEvents' and "3.0" (respectively) to
determine whether or not the Text event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "UlEvents' feature defined in this
specification. Please, refer to additional information about [conformancdin the DOM Level 3 Core
specification [DOM Level 3 Corg).

Note: To create an instance of the[Text Event |[p.29] interface, use the feature string "TextEvents' asthe
value of the input parameter used with the cr eat eEvent method of the[Docunent Event |[p.21]
interface.

I nterface TextEvent (introduced in DOM Level 3)
The Text Event interface provides specific contextual information associated with Text Events.

DL Definition

/1 Introduced in DOM Level 3:
i nterface [Text Event] : |U Event] {

/1 Virtual KeyCode

const unsigned | ong DOM_VK_UNDEFI NED = 0x0;

const unsigned | ong DOM VK_RI GHT_ALT = 0x01;
const unsigned | ong DOM VK_LEFT_ALT = 0x02;
const unsigned | ong DOM VK _LEFT_CONTROL = 0x03;
const unsigned | ong DOM_VK_RI GHT_CONTROL = 0x04;
const unsigned | ong DOM VK_LEFT_SHI FT = 0x05;
const unsigned | ong DOM VK_RI GHT_SHI FT = 0x06;
const unsigned | ong DOM VK_LEFT_META = 0x07;
const unsigned | ong DOM VK_RI GHT_META = 0x08;

29

http://www.w3.org/TR/DOM-Level-3-Core/introduction.html#ID-Conformance

1.5.3. Text events

const unsigned | ong DOM_VK_CAPS_LOCK = 0x09;
const unsigned | ong DOM _VK_DELETE = Ox0A;
const unsigned | ong DOM_VK_END = 0xO0B;
const unsigned | ong DOM VK_ENTER = 0x0C,
const unsigned | ong DOM_VK_ESCAPE = 0x0D;
const unsigned | ong DOM_VK_HOVE = OxOE;
const unsigned | ong DOM_VK_| NSERT = OxOF;
const unsigned | ong DOM_VK_NUM_LOCK = 0x10;
const unsigned | ong DOM_VK_PAUSE = 0x11;
const unsigned | ong DOM_VK_PRI NTSCREEN = 0x12;
const unsigned | ong DOM_VK_SCROLL_LOCK = 0x13;
const unsigned | ong DOM VK_LEFT = 0x14;
const unsigned | ong DOM_VK_RI GHT = 0x15;
const unsigned | ong DOM_VK_UP = 0x16;
const unsigned | ong DOM_VK_DOWN = 0x17;
const unsigned | ong DOM_VK_PAGE_DOMN = 0x18;
const unsigned | ong DOM_VK_PAGE_UP = 0x19;
const unsigned | ong DOM VK_F1 = Ox1A;
const unsigned | ong DOM VK_F2 = 0x1B;
const unsigned | ong DOM VK_F3 = 0x1C,
const unsigned | ong DOM _VK_F4 = 0x1D;
const unsigned | ong DOM _VK_F5 = Ox1E;
const unsigned | ong DOM_VK_F6 = Ox1F;
const unsigned | ong DOM VK_F7 = 0x20;
const unsigned | ong DOM VK_F8 = 0x21;
const unsigned | ong DOM _VK_F9 = 0x22;
const unsigned | ong DOM VK_F10 = 0x23;
const unsigned | ong DOM VK_F11 = 0x24;
const unsigned | ong DOM VK_F12 = 0x25;
const unsigned | ong DOM VK_F13 = 0x26;
const unsigned | ong DOM VK_F14 = 0x27;
const unsigned | ong DOM VK_F15 = 0x28;
const unsigned | ong DOM VK_F16 = 0x29;
const unsigned | ong DOM VK_F17 = Ox2A;
const unsigned | ong DOM VK_F18 = 0x2B;
const unsigned | ong DOM VK_F19 = 0x2C,
const unsigned | ong DOM_VK_F20 = 0x2D;
const unsigned | ong DOM VK_F21 = Ox2E;
const unsigned | ong DOM VK_F22 = Ox2F;
const unsigned | ong DOM VK_F23 = 0x30;
const unsigned | ong DOM VK_F24 = 0x31;

attribute DOVString [out put String}
attribute unsigned long [keyVall

attribute unsigned long [irtKeyVal}

attribute bool ean [visi bl eQut put Gener at ed}
attribute bool ean [nunPa
bool ean lcheckModi fierfin unsigned | ong nodifier);
voi d [nitTexi Evenifin DOVBtring typeArg,
i n bool ean canBubbl eArg,
i n bool ean cancel abl eArg,
in views::AbstractView vi ewArg,
in long detail Arg,
in DOVBtring outputStringArg,
in unsigned | ong keyVal Arg,
in unsigned | ong virtKeyVal Arg,
i n bool ean vi si bl eQut put Gener at edAr g,

30

1.5.3. Text events

i n bool ean nunPadArg);

voi d [nitvoditier(in unsigned |ong nodifier,
i n bool ean val ue);
b

Definition group VirtualKeyCode
An integer indicating which key was pressed.

Defined Constants

DOM _VK_CAPS_LOCK
DOM VK_DELETE
DOM_VK_DOMN
DOM _VK_END
DOM _VK_ENTER
DOM_VK_ESCAPE
DOM VK_F1

Constant for the F1 function key.
DOM VK _F10

Constant for the F10 function key.
DOM VK _F11

Constant for the F11 function key.
DOM VK _F12

Constant for the F12 function key.
DOM VK _F13

Constant for the F13 function key.
DOM VK _F14

Constant for the F14 function key.
DOM VK_F15

Constant for the F15 function key.
DOM VK _F16

Constant for the F16 function key.
DOM VK _F17

Constant for the F17 function key.
DOM VK _F18

Constant for the F18 function key.
DOM VK _F19

Constant for the F19 function key.
DOM VK_F2

Constant for the F2 function key.
DOM _VK_F20

Constant for the F20 function key.
DOM VK _F21

Constant for the F21 function key.
DOM VK_F22

Constant for the F22 function key.

31

1.5.3. Text events

DOM VK_F23

Constant for the F23 function key.
DOM VK_F24

Constant for the F24 function key.
DOM_VK_F3

Constant for the F3 function key.
DOM VK_F4

Constant for the F4 function key.
DOM VK_F5

Constant for the F5 function key.
DOM_VK_F6

Constant for the F6 function key.
DOM VK_F7

Constant for the F7 function key.
DOM_VK_F8

Constant for the F8 function key.
DOM_VK_F9

Constant for the F9 function key.
DOM_VK_HOVE
DOM VK _| NSERT
DOM VK_LEFT
DOM VK_LEFT_ALT

Thiskey isamodifier key
DOM VK_LEFT_CONTROL

Thiskey isamodifier key
DOM VK_LEFT_META

Thiskey isamodifier key
DOM VK_LEFT_SHI FT

Thiskey isamodifier key
DOM VK_NUM_LOCK
DOM_VK_PAGE_DOWN
DOM VK_PAGE_UP
DOM VK_PAUSE
DOM_VK_PRI NTSCREEN
DOM VK_RI GHT
DOM VK_RI GHT_ALT

Thiskey isamodifier key
DOM VK_RI GHT_CONTROL

Thiskey isamodifier key
DOM VK_RI GHT_META

Thiskey isamodifier key
DOM VK_RI GHT_SHI FT

Thiskey isamodifier key
DOM_VK_SCROLL_LOCK
DOM_VK_UNDEFI NED

Used for key events which do not have avirtual key code available.

32

1.5.3. Text events

DOM VK_UP
Attributes
keyVal of typeunsi gned | ong
The value of keyVal holds the value of the Unicode character associated with the
depressed key. If the key has no Unicode representation or no Unicode character is
availablethevaueisO..
nunPad of type bool ean
The nunPad attribute indicates whether or not the key event was generated on the number
pad section of the keyboard. If the number pad was used to generate the key event the value
istrue, otherwise the valueisfalse.
out put Stri ng of type DOVSt r i ng
out put St ri ng holds the value of the output generated by the key event. This may be a
single Unicode character or it may be astring. It may also be null in the case where no
output was generated by the key event.
vi rt KeyVval of typeunsi gned | ong
When the key associated with akey event is not representable via a Unicode character
vi rt KeyVal holdsthe virtual key code associated with the depressed key. If the key has
a Unicode representation or no virtual code is available the valueis
DOM_VK_UNDEFI NED.
vi si bl eQut put Gener at ed of type bool ean
Thevi si bl eQut put Gener at ed attribute indicates whether the key event will
normally cause visible output. If the key event does not generate any visible output, such as
the use of afunction key or the combination of certain modifier keys used in conjunction
with another key, then the value will be false. If visible output is normally generated by the
key event then the value will be true.
Thevalueof vi si bl eQut put Gener at ed does not guarantee the creation of a
character. If akey event causing visible output is cancelable it may be prevented from
causing visible output. This attribute is intended primarily to differentiate between keys
events which may or may not produce visible output depending on the system state.
Methods
checkModi fi er
ThecheckModi fi er method isused to check the status of a single modifier key
associated with aText Event . Theidentifier of the modifier in question is passed into the
checkModi fi er function. If the modifier istriggered it will return true. If not, it will
return false.
Thelist of keys below represents the allowable modifier paramaters for this method.
® DOM_VK_LEFT_ALT
DOM_VK_RIGHT_ALT
DOM_VK_LEFT_CONTROL
DOM_VK_RIGHT_CONTROL
DOM_VK_LEFT_SHIFT
DOM_VK_RIGHT_SHIFT
e DOM_VK_META
Parameters

33

1.5.3. Text events

nodi fi er of typeunsi gned | ong
The modifier which the user wishes to query.
Return Value

bool ean The status of the modifier represented as a bool ean.

No Exceptions
initMdifier
Thei ni t Modi fi er method isused to initialize the values of any modifiers associated
with aText Event created through the|[Docunent Event |[p.21] interface. This method
may only be called before the Text Event has been dispatched via the dispatchEvent
method, though it may be called multiple times during that phase if necessary. If called
multiple times with the sasme nodi f i er property the final invocation takes precedence.
Unless explicitly give avalue of true, all modifiers have avalue of false. This method has
no effect if called after the event has been dispatched.
The list of keys below represents the allowable modifier paramaters for this method.
e DOM VK _LEFT ALT
DOM_VK_RIGHT_ALT
DOM_VK_LEFT_CONTROL
DOM_VK_RIGHT_CONTROL
DOM_VK_LEFT_SHIFT
DOM_VK_RIGHT_SHIFT
e DOM_VK_META
Parameters
nodi fi er of typeunsi gned | ong
The modifier which the user wishesto initialize
val ue of typebool ean
The new value of the modifier.
No Return Value
No Exceptions
i ni t Text Event
Thei ni t Text Event method isused to initialize the value of a Text Event created
through the[Docunent Event |[p.21] interface. This method may only be called before the
Text Event has been dispatched via the dispatchEvent method, though it may be called
multiple times during that phase if necessary. If called multiple times, the final invocation
takes precedence. This method has no effect if called after the event has been dispatched.
Parameters
t ypeAr g of type DOVt ri ng
Specifies the event type.
canBubbl eAr g of typebool ean
Specifies whether or not the event can bubble.
cancel abl eAr g of typebool ean
Specifies whether or not the event’s default action can be prevent.

34

1.5.3. Text events

Vi ewAr g of typevi ews: : Abstract Vi ew
Specifiesthe Text Event 'sAbst r act Vi ew.
det ai | Ar g of typel ong
Specifies the number of repeated keypresses, if available.
out put Stri ngAr g of type DOVSt ri ng
Specifiesthe Text Event 'sout put St ri ng attribute
keyVal Ar g of typeunsi gned | ong
Specifiesthe Text Event 'skeyVal attribute
vi rt KeyVal Ar g of typeunsi gned | ong
Specifiesthe Text Event 'svi r t KeyVal attribute
vi si bl eQut put Gener at edAr g of typebool ean
Specifiesthe Text Event 'svi si bl eQut put Gener at edattribute
nunPadAr g of typebool ean
Specifiesthe Text Event ’'s nunPadattribute
No Return Value
No Exceptions

There are two major groups of key events. Thefirst containsthet ext | nput event. Thet ext | nput
event indicates that text information has been entered, either in the form of printable characters or
non-printable text information such as modifier keys. t ext | nput events are not necessarily
accompanied by the events of the second major groups of key events, keydown and keyup.

textl nput
The textlnput event indicates that text information has been entered. The text information entered can
originate from avariety of sources. It could, for example, be a character resulting from a keypress. It
could also be a string resulting from an input method.
Thedet ai | attribute inherited from[Ul Event][p.23] is used to indicated the number of keypresses
which have occurred during key repetition. If thisinformation is not available this value should be O.
® Bubbles: Yes
® Cancelable: Yes
® Context Info: view, detail, visibleOutputGenerated, outputString, keyVal, virtKeyVal, numPad.

Thekeydown and keyup events comprise the second group of key events. These events arefired to
indicate the physical motion of the keys on the character generation device. Depending on the input
system being used, t ext Event events may or may not be generated for each pair of keydown and
keyup events.

keydown
The keydown event occurs when akey is pressed down.
® Bubbles: Yes
® Cancelable: Yes
® Context Info: view, keyVadl, virtKeyVal, numPad.
keyup
The keyup event occurs when akey is released.
® Bubbles: Yes
® Cancelable: Yes

35

1.5.4. Mutation event types

e Context Info: view, keyVal, virtKeyVal, numPad.

1.5.4. M utation event types

The mutation event module is designed to allow notification of any changes to the structure of a
document, including attr and text modifications. It may be noted that none of the mutation events listed
are designated as cancelable. This stems from the fact that it is very difficult to make use of existing DOM
interfaces which cause document modifications if any change to the document might or might not take
place due to cancelation of the related event. Although thisis still adesired capability, it was decided that
it would be better left until the addition of transactionsinto the DOM.

Many single modifications of the tree can cause multiple mutation events to be fired. Rather than attempt
to specify the ordering of mutation events due to every possible modification of the tree, the ordering of
these eventsis left to the implementation.

A DOM application may usethe hasFeat ur e(f eat ure, versi on) method of the

DOM npl enent at i on interface with parameter values "MutationEvents' and "3.0" (respectively) to
determine whether or not the Mutation event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "Events' feature defined in this
specification. Please, refer to additional information about [conformancein the DOM Level 3 Core
specification [DOM Level 3 Corgl. The DOM Level 3 Mutation Events module is backward compatible
with the DOM Level 2 Mutation Events [DOM Level 2 Eventg module, i.e. aDOM Level 3 Mutation
Events implementation who returnst r ue for "MutationEvents" with thever si on number " 3. 0" must
asoreturnt r ue for thisf eat ur e whenthever si on numberis" 2. 0","" or,nul I .

Note: To create an instance of the[Mut at i onEvent][p.36] interface, use the feature string
"MutationEvents' as the value of the input parameter used with the cr eat eEvent method of the
[Docunent Event |[p.21] interface.

I nterface MutationEvent (introduced in DOM Level 2)

TheMut at i onEvent interface provides specific contextual information associated with Mutation
events.

IDL Definition

// Introduced in DOM Level 2:
interface [Mutati onEvent]| : [Event] {

/1 attrChangeType

const unsigned short MODI FI CATI ON = 1;
const unsigned short ADDI TI ON = 2;
const unsigned short REMOVAL = 3;
readonly attribute Node [relat edNode}

readonly attribute DOVString [prevVval ue

readonly attribute DOVString [newval ue}

readonly attribute DOVBtring it Nane}

readonly attribute unsigned short [aitrChange

voi d IinitMutationEvent|in DOVBtring typeArg,

36

http://www.w3.org/TR/DOM-Level-3-Core/introduction.html#ID-Conformance

1.5.4. Mutation event types

i n bool ean canBubbl eArg,

i n bool ean cancel abl eArg,

i n Node rel at edNodeAr g,

in DOVBtring prevVal ueArg,

in DOVBtring newval ueAr g,

in DOVBtring attrNameArg,

i n unsigned short attrChangeArqg);
3

Definition group attrChangeType

Aninteger indicating in which way the At t r was changed.

Defined Constants
ADDI Tl ON
The At t r wasjust added.
MODI FI CATI ON
The At t r wasmodified in place.
REMOVAL
TheAtt r wasjust removed.
Attributes
at t r Change of typeunsi gned short, readonly
at t r Change indicates the type of change which triggered the DOMAttrM odified event.
The values can be MODI FI CATI ON, ADDI TI ON, or REMOVAL.
at t r Name of type DOVBt r i ng, readonly
at t r Nane indicates the name of the changed At t r node in a DOMAttrModified event.
newVal ue of type DOVEt r i ng, readonly
newVal ue indicates the new value of the At t r node in DOMAttrModified events, and of
the Char act er Dat a node in DOM CharacterDataM odified events.
pr evVal ue of type DOVSt r i ng, readonly
pr evVal ue indicates the previous value of the At t r node in DOMALttrModified events,
and of the Char act er Dat a node in DOM CharacterDataM odified events.
r el at edNode of type Node, readonly
r el at edNode isused to identify a secondary node related to a mutation event. For
example, if amutation event is dispatched to a node indicating that its parent has changed,
ther el at edNode isthe changed parent. If an event isinstead dispatched to a subtree
indicating a node was changed within it, ther el at edNode isthe changed node. In the
case of the DOMAttrModified event it indicates the At t r node which was modified,
added, or removed.
Methods
i ni t Mut ati onEvent
Thei ni t Mut at i onEvent method is used to initialize the value of a
Mut at i onEvent created through the[Docunent Event |[p.21] interface. This method
may only be called before the Mut at i onEvent has been dispatched viathe
di spat chEvent method, though it may be called multiple times during that phase if
necessary. If called multiple times, the final invocation takes precedence.
Parameters

37

1.5.4. Mutation event types

t ypeAr g of type DOVBt r i ng
Specifies the event type.
canBubbl eAr g of typebool ean
Specifies whether or not the event can bubble.
cancel abl eAr g of typebool ean
Specifies whether or not the event’ s default action can be prevented.
r el at edNodeAr g of type Node
Specifies the[Event][p.18] ' s related Node.
pr evVal ueAr g of type DOVSt r i ng
Specifies the[Event][p.18] 'spr evVal ue attribute. This value may be null.
newval ueAr g of type DOVSt ri ng
Specifies the[Event][p.18] 'snewval ue attribute. This value may be null.
at t r NanmeAr g of type DOVSt ri ng
Specifies the[Event][p.18] 'sat t r Name attribute. This value may be null.
at t r ChangeAr g of typeunsi gned short
Specifiesthe[Event][p.18] 'sat t r Change attribute
No Return Value
No Exceptions

The different types of Mutation events that can occur are:

DOM SubtreeM odified
Thisisagenera event for notification of all changes to the document. It can be used instead of the
more specific events listed below. It may be fired after a single modification to the document or, at
the implementation’ s discretion, after multiple changes have occurred. The latter use should
generally be used to accomodate multiple changes which occur either ssmultaneously or in rapid
succession. The target of this event is the lowest common parent of the changes which have taken
place. This event is dispatched after any other events caused by the mutation have fired.
® Bubbles: Yes
® Cancelable: No
® Context Info: None
DOM Nodel nserted
Fired when a node has been added as alchild [p.67] of another node. This event is dispatched after the
insertion has taken place. The target of this event is the node being inserted.
® Bubbles: Yes
® Cancelable: No
® Context Info: relatedNode holds the parent node
DOM NodeRemoved
Fired when a node is being removed from its parent node. This event is dispatched before the node is
removed from the tree. The target of this event is the node being removed.
® Bubbles: Yes
® Cancelable: No
® Context Info: relatedNode holds the parent node
DOM NodeRemovedFromDocument
Fired when anode is being removed from a document, either through direct removal of the Node or
removal of asubtreein which it is contained. This event is dispatched before the removal takes place.

38

1.5.5. HTML event types

The target of this event isthe Node being removed. If the Node is being directly removed the
DOMNodeRemoved event will fire before the DOMNodeRemovedFromDocument event.
® Bubbles: No
® Cancelable: No
® Context Info: None
DOM Nodel nsertedl ntoDocument
Fired when anode is being inserted into a document, either through direct insertion of the Node or
insertion of a subtree in which it is contained. This event is dispatched after the insertion has taken
place. The target of this event isthe node being inserted. If the Node is being directly inserted the
DOMNodel nserted event will fire before the DOMNodel nsertedl ntoDocument event.
® Bubbles: No
® Cancelable: No
® Context Info: None
DOMAttrModified
Fired after an At t r has been modified on anode. The target of this event isthe Node whose At t r
changed. The value of attrChange indicates whether the At t r was modified, added, or removed. The
value of relatedNode indicates the At t r node whose value has been affected. It is expected that
string based replacement of an At t r value will be viewed as a modification of the At t r sinceits
identity does not change. Subsequently replacement of the At t r node with adifferent At t r nodeis
viewed as the removal of thefirst At t r node and the addition of the second.
® Bubbles: Yes
® Cancelable: No
e Context Info: attrName, attrChange, prevVaue, newValue, relatedNode
DOM Char acter DataM odified
Fired after CharacterData within a node has been modified but the node itself has not been inserted or
deleted. Thisevent isalso triggered by modifications to Pl elements. The target of thisevent isthe
CharacterData node.
® Bubbles: Yes
® Cancelable: No
® Context Info: prevValue, newVaue

1.5.5. HTML event types

The HTML event module is composed of events listed in HTML 4.0 and additional events which are
supported in[DOM Level Q[p.67] browsers.

A DOM application may usethe hasFeat ur e(f eat ure, versi on) method of the

DOM npl enment at i on interface with parameter values"HTMLEvents' and "3.0" (respectively) to
determine whether or not the HTML event module is supported by the implementation. In order to fully
support this module, an implementation must also support the "Events' feature defined in this
specification. Please, refer to additional information about [conformancein the DOM Level 3 Core
specification [DOM Level 3 Corgl. The DOM Level 3 HTML Events module is backward compatible
with the DOM Level 2 HTML Events[[DOM Level 2 Eventd module, i.e. aDOM Level 3HTML Events
implementation who returnst r ue for "HTMLEvents' with thever si on number " 3. 0" must also
returnt r ue for thisf eat ur e whenthever si on numberis" 2. 0","" or,nul I .

39

http://www.w3.org/TR/DOM-Level-3-Core/introduction.html#ID-Conformance

1.5.5. HTML event types

Note: To create an instance of the[Event][p.18] interface for the HTML event module, use the feature
string "HTMLEvents' as the value of the input parameter used with the cr eat eEvent method of the
[Docunent Event |[p.21] interface.

The HTML events use the base DOM Event interface to pass contextual information.
The different types of such eventsthat can occur are:

load
The load event occurs when the DOM implementation finishes loading all content within the BODY
element, all frameswithin a FRAMESET, or an OBJECT e ement.
® Bubbles: No
® Cancelable: No
® Context Info: None
unload
The unload event occurs when the DOM implementation removes a document from a window or
frame. Thisevent isvalid for BODY and FRAMESET elements.
® Bubbles: No
e Cancedable: No
e Context Info: None
abort
The abort event occurs when page loading is stopped before an image has been allowed to
completely load. This event appliesto OBJECT elements.
® Bubbles: Yes
® Cancelable: No
® Context Info: None
error
The error event occurs when an image does not load properly or when an error occurs during script
execution. Thisevent isvalid for OBJECT elements, BODY elements, and FRAMESET element.
® Bubbles: Yes
e Canceable: No
e Context Info: None
select
The select event occurs when a user selects sometext in atext field. Thisevent isvalid for INPUT
and TEXTAREA elements.
® Bubbles: Yes
® Cancelable: No
® Context Info: None
change
The change event occurs when a control [oses the input focus and its value has been modified since
gaining focus. Thisevent isvalid for INPUT, SELECT, and TEXTAREA. element.
® Bubbles: Yes
e Canceable: No
e Context Info: None

40

1.6. Issues

submit
The submit event occurs when aform is submitted. This event only applies to the FORM el ement.
® Bubbles: Yes
® Cancelable: Yes
® Context Info: None
r eset
The reset event occurs when aform isreset. This event only appliesto the FORM element.
® Bubbles: Yes
® Cancelable: No
e Context Info: None
focus
The focus event occurs when an element receives focus either via a pointing device or by tabbing
navigation. Thisevent isvalid for the following elements: A, AREA, LABEL, INPUT, SELECT,
TEXTAREA, and BUTTON.
® Bubbles: No
® Cancelable: No
® Context Info: None
blur
The blur event occurs when an element loses focus either via the pointing device or by tabbing
navigation. Thisevent isvalid for the following elements. A, AREA, LABEL, INPUT, SELECT,
TEXTAREA, and BUTTON.
® Bubbles: No
® Cancelable: No
e Context Info: None
resize
The resize event occurs when a document view is resized.
® Bubbles: Yes
® Cancelable: No
® Context Info: None
scroll
The scroll event occurs when a document view is scrolled.
® Bubbles: Yes
® Cancelable: No
e Context Info: None

1.6. Issues

Issue getModifier:
Why is modifier state exposed through a method rather than an attribute?

Resolution: The modifier keys are not currently representable as bit flags. Setting them individually
would therefore require an attribute for each. Rather than bloat the api, especially given the addition

of left and right modifier keys, the modifiers are exposed via a single method.
I ssue 1SO-IEC-9995:

Have you coordinated this set with that defined by 1SO/IEC 9995 which addresses various Keyboard

symbol issues.

41

1.6. Issues

Resolution: Upon examination of the SO spec we found it to be insufficient to our needs. It does not
represent the left/right differentiation between some keys. It also lacks function keys.

Issue | SO-1EC-14755:
Review | SO/IEC 14755 "Input methods to enter characters from the repertoire of 1SO/IEC 10646
with akeyboard or other input device" to insure that the treatment of input state is consistent with
that expected by current practice when it comes to platforms which support input methods.

I ssue offsets:
(Thisissueisrelated with mouse events and Views?)
it would be useful if MouseEvent class had a property that would enable listners to learn about
coordinates of the event within the element’s own coordinate system.
Resolution: We are not doing views at the momewnt.

| ssue unicodeidents:
Some of the unicode chars are pretty esoteric (i.e. home, end, scroll lock). Do we want to adopt these
or will this be harder on users than defining them in the DOM Event Spec. About a dozen keysfit
this pattern.
Resolution: There are use cases to keep them.

| ssue texteventwithoutchargeneration:
The results of the discussions on switching the keypress event out for the textEvent were
inconclusive on the question of whether to fire textEvents for non character generating keys input.
Thisincludes modifier keys, function keys, etc.
Resolution: There are use cases to keep them.

I ssue public0198-1:
From[0198} being able to manipulate the "default" group using EventGroup functions?
Resolution: Non-groups methods can always be used to access the default group. We didn’t find a
good reason to have access to the default group through the groups methods for the moment.

I ssue public0198-2:
From[0198} no dispatchEvent for a specific group?
Resolution: The default and correct behavior is to dispatch the event on all listeners, independently
from the groups. We think we should stick with this model without further reasons.

I ssue public0198-3:
From[0198, assume that dispatchEvent’ s return value would be false if any listener in any group
called preventDefault?
Resolution: Yes. (no changein the spec)

I ssue public0198-4:
From[0198}, you could potentially add the same listener to the same event target on multiple groups.
Should the Event or EventListener interface be extended so that you could detect which group is
active?
Resolution: We didn't find good use cases to do so for the moment.

I ssue public0279-1:
From event types and case sensitivity.
Resolution: [p.19] returns event names in lowercase.

I ssue public0283-1:
From|0283} an implementation can support the MutationEvents module even if it never fires anything
more specific than DOM SubtreeM odified events. Furthermore, although it is not recommended, an
implementation may legally choose to fire an event of thistype only after every 100 modifications to
the document, or every 30 seconds if any changes have happened during that interval.

42

http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0198.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0198.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0198.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0198.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0279.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0283.html

1.6. Issues

Resolution: Y es, the spec doesn’'t prevent to do so. (nho change in the spec)

I ssue public0294-1:
From handleEvent should be alowed to throw exceptions given that the dispatch isignoring
them.

I ssue public0294-2:
From|[0294] if a user provides his own implementation of Event instead of using createEvent, how
does the DOM implementation do to set the currentTarget or phase? (see also[0296)
Resolution: A new CustomEvent interface was added in the draft.

I ssue public0294-3:
From Name collisions between EventTarget.addEventL istener() and
EventTargetGroup.addEventListener() and removeEventListener* s()
Resolution: Fixed.

I ssue public0294-4:
From|[0294] method of creating generic Event (i.e. createEvent("Events")) in case you want to use
Event dispatching, but don't care if the implementation supports any other feature.
createEvents("Events") could return whatever implementation that was most convienient for it. For
example, an HTML implementation could return an object that coincidentally supported
HTMLEvent.
Resolution: Yes. we don't prevent that. (no change in the spec)

I ssue public0294-5:
From merge the Event groups with the existing interfaces, don’t create new ones.
Resolution: Done.

I ssue public0295-1:
From should we rename the event "textEvent" to "text"?
Resolution: "textInput”

I ssue public0295-2:
From|[0295] include a note that explains the interaction between addEventListener(),
removeEventListener() and eventListenerList.item(). Does removeEventListener() preserve the order
of the registered event listeners that are not removed? Are EventListenerList live?
Resolution: Fixed: unordered and not lived.

I ssue public0296-1:
From hasFeature("MouseEvents', "3.0") returns true and similar passages imply that level 2
implementations don’t support the corresponding event modules, since they would return false to
hasFeature(modulename,”3.0"). They do support it, just not at the L3 version. An L3 version of an
L2 introduced module, should return true if the versionisnull, *", "2.0" or "3.0".
Resolution: Fixed.

I ssue public0296-2:
From It might be useful to cause acall to init* Event() after dispatch has started to raise an
exception. Dispatching an event a second time should also raise an exception.
Resolution: waiting for a use case and clarification.

I ssue publicO301:
From the capture phase can’t be disabled. text is misleading.
Resolution: clarified.

43

http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0294.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0294.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0296.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0294.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0294.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0294.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0295.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0295.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0296.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0296.html
http://lists.w3.org/Archives/Public/www-dom/2001JulSep/0301.html

1.6. Issues

44

Appendix A: Changes

Appendix A: Changes

Editor:
Philippe Le HégaretWv3C

A.1l: Changesbetween DOM Level 2 Eventsand DOM Level 3
Events

A.1.1: Changesto DOM Level 2 Eventsinterfaces
(ED: This page needs updatg...

InterfacelEvent Tar get |[p.12]
The[Event][p.18] interface has one new attribueazent Li st ener Li st .

A.1.2: New Interfaces

The interface&vent Li st ener Li st ,|[Event G oup|[p.16] , Event Tar get G oup,
Docunent Event Gr oup, andText Event |[p.29] were added to the Eventsodule.

45

A.1.2: New Interfaces

46

Appendix B: IDL Definitions

Appendix B: IDL Definitions

This appendix contains the complete OMG IDL [[OMGIDL] for the Level 3 Document Object Model
Events definitions.

The IDL filesare also available as;
http://www.w3.0rg/TR/2002/WD-DOM-L evel-3-Events-20020208/idl .zip

events.idl:

/!l File: events.idl

#i fndef _EVENTS |DL_
#define _EVENTS | DL_

#i ncl ude "domidl"
#i nclude "views.idl"

#pragma prefix "dom w3c. org"
nodul e events

{

typedef dom :DOMString DOVBtring;
typedef dom : DOMTi neSt anp DOMII neSt anp;
typedef dom : Node Node;

interface EventLi stener;
interface Event;
interface Event G oup;

/1 1ntroduced in DOM Level 2:
exception |[Event Exception] {
unsi gned short code;

}
/1 Event Excepti onCode
const unsi gned short [ONSPECI FT ED_EVENT_TYPE ERR = 0;

/1 1ntroduced in DOM Level 2:
interface [Event Target] {
voi d addEvent Li stenerfin DOVString type,
in |[EventListener]listener,
i n bool ean useCapture);
voi d IFenoveEvent Li st ener(in DOVBtring type,
in|EventLi stener]| |listener,
i n bool ean useCapture);
bool ean |di spat chEvent|i n [Event] evt)
rai ses(|Event Exception);

/1 Introduced in DOM Level 3:

voi d laddG oupedEvent Li st enerfin DOVString type,
in [EventListener]|listener,
i n bool ean useCapture,
in evt G oup) ;

/! Introduced in DOM Level 3:

47

events.idl:

voi d removeG oupedEvent Li st enerfin DOVString type,
in|EventLi stener]| listener,
i n bool ean useCapture,
in evt Group) ;

/! Introduced in DOM Level 3:

bool ean [canTriggerfin DOVString type);
/1 Introduced in DOM Level 3:
bool ean I sRegi st eredHerefin DOVString type);

I

/! Introduced in DOM Level 3:

interface {
bool ean ILsSaneEvent G oup|i n [Event G oup| ot her);

I

/1 Introduced in DOM Level 2:
interface [EventLi st ener] {
voi d lhandl eEvent|i n |[Event]| evt);

h

/! Introduced in DOM Level 2:
interface [Event] {

/'l PhaseType

const unsigned short CAPTURI NG_PHASE = 1;
const unsi gned short AT_TARCGET = 2;
const unsi gned short BUBBLI NG_PHASE = 3;
readonly attribute DOVString Lype}
readonly attribute [Event Tar get] [farget}
readonly attribute [Event Tar get] [current Tar get}
readonly attribute unsigned short [event Phasel
readonly attribute bool ean bubbl es
readonly attribute bool ean lcancel abl e
readonly attribute DOMIi neStanp [T meStanpt
voi d st opPr opagati on|);
voi d [prevent Defaul i}) ;
voi d [[nitEvent)in DOVBtring event TypeArg,
i n bool ean canBubbl eArg,
i n bool ean cancel abl eArg);
b
/1 Introduced in DOM Level 2:
i nterface [Docunent Event] {
Event [createEvent]in DOVBtring event Type)
rai ses(dom : DOVExcepti on);
[createEvent G oupl);

I

/! Introduced in DOM Level 3:

i nterface |Cust onEvent] : [Event] {
voi d set Current Target|in Node target);
voi d Set Event Phasefi n unsi gned short phase);

h

/1 Introduced in DOM Level 2:
interface [U Event]: [Event]{

48

events.idl:

readonly attribute views::AbstractVi ew vi ew
readonly attribute |ong
[nTtUEvent]in DOMString typeArg,

i n bool ean canBubbl eArg,

i n bool ean cancel abl eArg,

in views::AbstractVi ew vi ewAr g,

voi d

I

readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute
readonly attribute |

voi d

in long detail Arg);
/1 Introduced in DOM Level 2:
i nterface [WMouseEvent] : [U Event] {

| ong lscreenX

| ong [screenY

| ong [cTTentX

I ong T ent ¥

bool ean [cirTKey]

bool ean BhiTiKe

bool ean [a T Key}

bool ean [mret aKe

unsi gned short [outton}

Event Tar get| rel at edTar get}

[ni t MbuseEvent|in DOVBtring typeArg
i n bool ean canBubbl eArg
i n bool ean cancel abl eArg,
in views::AbstractView vi ewArg
in long detail Arg
in long screenXArg,
in long screenYArg
in long clientXArg,
in long clientVYArg,
in boolean ctrl KeyArg
in bool ean alt KeyArg,
i n bool ean shiftKeyArg
in bool ean net aKeyArg
i n unsigned short buttonArg
in|Event Target] rel at edTar get Arg) ;

I

/1 Introduced in DOM Level 3:
interface [Text Event| : |U Event] {

/1 Virtual KeyCode

const
const
const
const
const
const
const
const
const
const
const
const
const
const
const

unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong
unsi gned | ong

DOM VK_UNDEFI NED = 0x0;
DOM VK_RI GHT_ALT = 0x01;
DOM VK_LEFT_ALT = 0x02;
DOM VK_LEFT_CONTROL = 0x03;
DOM VK_RI GHT_CONTROL = 0x04;
DOM VK_LEFT_SHI FT = 0x05;
DOM VK_RI GHT_SHI FT = 0x06;
DOM VK_LEFT_META = 0x07;
DOM VK_RI GHT_META = 0x08;
DOM VK_CAPS_LOCK = 0x09;
DOM VK_DELETE = OXO0A;
DOM VK_END = OXO0B;
DOM VK_ENTER = 0x0C
DOM VK_ESCAPE = 0Xx0D,
DOM_VK_HOVE = OxOE;

49

events.idl:

const unsigned | ong DOM_VK_| NSERT = OxOF;
const unsigned | ong DOM_VK_NUM_LOCK = 0x10;
const unsigned | ong DOM_VK_PAUSE = 0x11;
const unsigned | ong DOM_VK_PRI NTSCREEN = 0x12;
const unsigned | ong DOM VK_SCROLL_LOCK = 0x13;
const unsigned | ong DOM_VK_LEFT = 0x14;
const unsigned | ong DOM_VK_RI GHT = 0x15;
const unsigned | ong DOM_VK_UP = 0x16;
const unsigned | ong DOM_VK_DOWN = 0x17;
const unsigned | ong DOM_VK_PAGE_DOMN = 0x18;
const unsigned | ong DOM_VK_PACGE_UP = 0x19;
const unsigned | ong DOM VK_F1 = Ox1A;
const unsigned | ong DOM _VK_F2 = 0x1B;
const unsigned | ong DOM VK_F3 = 0x1C,
const unsigned | ong DOM_VK_F4 = 0x1D;
const unsigned | ong DOM_VK_F5 = Ox1E;
const unsigned | ong DOM_VK_F6 = Ox1F;
const unsigned | ong DOM_VK_F7 = 0x20;
const unsigned | ong DOM VK_F8 = 0x21;
const unsigned | ong DOM_VK_F9 = 0x22;
const unsigned | ong DOM_VK_F10 = 0x23;
const unsigned | ong DOM VK _F11 = 0x24;
const unsigned | ong DOM VK _F12 = 0x25;
const unsigned | ong DOM VK _F13 = 0x26;
const unsigned | ong DOM VK _F14 = 0x27;
const unsigned | ong DOM VK_F15 = 0x28;
const unsigned | ong DOM VK_F16 = 0x29;
const unsigned | ong DOM VK_F17 = Ox2A;
const unsigned | ong DOM VK _F18 = 0x2B;
const unsigned | ong DOM VK _F19 = 0x2C,
const unsigned | ong DOM_VK_F20 = 0x2D;
const unsigned | ong DOM VK_F21 = Ox2E;
const unsigned | ong DOM VK_F22 = Ox2F;
const unsigned | ong DOM VK_F23 = 0x30;
const unsigned | ong DOM_VK_F24 = 0x31;
attribute DOVBtring out put St ri ngj
attribute unsigned long |keyVal]
attribute unsigned long [irtKeyVal}
attribute bool ean [visi bl eQut put Gener at ed}
attribute bool ean [nunPa
bool ean lcheckModi fierfin unsigned | ong nodifier);
voi d [nitText Eveniin DOVBtring typeArg,
i n bool ean canBubbl eArg,
i n bool ean cancel abl eArg,
in views::Abstract Vi ew vi ewAr g,
in long detail Arg,
in DOVBtring outputStringArg,
in unsigned | ong keyVal Arg,
in unsigned | ong virtKeyVal Arg,
i n bool ean vi si bl eQut put Gener at edAr g,
i n bool ean nunPadArg);
voi d [nitMbdifierfin unsigned long modifier,

i n bool ean val ue);

I

/! Introduced in DOM Level 2:

50

events.idl:

interface [Mutati onkEvent| : [Event] {

/1 attrChangeType

const unsi gned short MODI FI CATI ON = 1;
const unsi gned short ADDI TI ON = 2;
const unsi gned short REMOVAL = 3;
readonly attribute Node [rel"at edNodel
readonly attribute DOVBtring prevVal uel
readonly attribute DOVString hewval ue
readonly attribute DOVBtring [attr Nang]
readonly attribute unsigned short [atiirChangel
voi d ILnit Mutati onEventfin DOVString typeArg,
i n bool ean canBubbl eArg,
i n bool ean cancel abl eArg,
in Node rel at edNodeAr g,
in DOVBtring prevVal ueArg,
in DOVBtring newal ueAr g,
in DOVBtring attrNaneArg,
i n unsigned short attrChangeArg);

I
I

#endif // _EVENTS |DL_

51

events.idl:

52

Appendix C: Java Language Binding

Appendix C: Java L anguage Binding
This appendix contains the complete Java bindings for the Level 3 Document Object Model Events.

The Javafilesare aso available as
http://www.w3.0rg/ TR/2002/WD-DOM-L evel-3-Events-20020208/java-binding.zip

or g/w3c/dom/events/EventException.java:

package org.w3c.dom events;

public class Event Exception extends Runti neException {
publi ¢ Event Excepti on(short code, String nessage) {
super (message) ;
this.code = code;

public short code;
/1 Event Excepti onCode
public static final short UNSPEC FI ED_EVENT_TYPE ERR = O;

or g/w3c/dom/events/EventTar get.java:

package org.w3c.dom events;

public interface Event Target {
public void addEventLi stener(String type,
Event Li stener |istener,
bool ean useCapture);

public void renmoveEventLi stener(String type,
Event Li stener |i stener,
bool ean useCapture);

publ i ¢ bool ean di spat chEvent (Event evt)
t hrows Event Excepti on;

public void addG oupedEventLi stener(String type,
Event Li stener |i stener,
bool ean useCapt ure,
Event Group evt Group);

public void remveG oupedEvent Li stener(String type,
Event Li stener |istener,
bool ean useCapt ure,
Event G oup evt Group);
public bool ean canTrigger(String type);

publ i c bool ean isRegisteredHere(String type);

53

org/w3c/dom/events/EventGroup.java:

or g/w3c/dom/eventsEventGroup.java:

package org.w3c.dom events;

public interface Event G oup {
publ i c bool ean i sSaneEvent Group(Event Group ot her);

or g/w3c/dom/events/EventListener java:
package org.w3c.dom events;

public interface EventListener {
public void handl eEvent (Event evt);

or g/w3c/dom/eventsEvent.java:

package org.w3c.dom events;

public interface Event {
/'l PhaseType

public static final short CAPTURI NG PHASE = 1;
public static final short AT_TARGET = 2;
public static final short BUBBLI NG PHASE = 3;

public String getType();

public Event Target get Target();

publ i c Event Target get Current Target();
public short getEventPhase();

publ i ¢ bool ean get Bubbl es();

publi ¢ bool ean get Cancel abl e();

public | ong getTi meStanp();

public void stopPropagation();

public void preventDefault();

public void initEvent(String event TypeArg,

bool ean canBubbl eAr g,
bool ean cancel abl eArg);

54

org/w3c/dom/events/DocumentEvent.java:

or g/w3c/dom/events/DocumentEvent.java:

package org.w3c.dom events;
i mport org.w3c. dom DOVExcepti on;
public interface Document Event {
public Event createEvent(String event Type)

t hrows DOVExcepti on;

public Event Goup createEvent Group();

or g/w3c/dom/events/CustomEvent.java:

package org.w3c.dom events;
i mport org.w3c. dom Node;

public interface CustonmEvent extends Event ({
public void setCurrent Target (Node target);

public void setEvent Phase(short phase);

or g/w3c/dom/events/Ul Event.java:

package org.w3c.dom events;
i mport org.w3c.dom vi ews. Abstract Vi ew,

public interface U Event extends Event ({
public AbstractView getView);

public int getDetail ();

public void initU Event(String typeArg,
bool ean canBubbl eAr g,
bool ean cancel abl eAr g,

Abstract Vi ew vi ewAr g,
int detail Arg);

or g/w3c/dom/events/M ouseEvent.java:

package org.w3c.dom events;
i mport org.w3c.dom vi ews. Abstract Vi ew;

public interface MuseEvent extends U Event {
public int getScreenX();

55

publi
publi
publ i
publi
publi
publ i
publi
publ i
publ i

publ i

org/w3c/dom/events/TextEvent.java:

i nt getScreenY();

int getdientX();

int getdientY();

bool ean getCtrl Key();

bool ean get Shi ftKey();

bool ean get Al t Key();

bool ean get Met aKey() :

short getButton();

Event Tar get get Rel at edTarget () ;

void initMuseEvent (String typeArg,
bool ean canBubbl eAr g,
bool ean cancel abl eAr g,
Abstract Vi ew vi ewAr g,
int detail Arg,
int screenXArg,
i nt screenYArg,
int clientXArg,
int clientYArg,
bool ean ctrl KeyArg,
bool ean al t KeyAr g,
bool ean shiftKeyArg,
bool ean net aKeyAr g,
short buttonArg,

Event Target rel atedTarget Arg);

or g/w3c/dom/events/TextEvent.java:

package org.w3c.dom events;

i mport org.w3c.dom vi ews. Abstract Vi ew,

public interface Text Event extends U Event {
/1 Virtual KeyCode

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

C

Cc
C
C
C
C
C
C
C
C
C
C

static final int DOM VK UNDEFI NED =
static final int DOM VK Rl GHT_ALT =
static final int DOM VK LEFT ALT =
static final int DOM VK LEFT CONTROL =
static final int DOM VK Rl GHT _CONTROL =
static final int DOM VK LEFT SH FT =
static final int DOM VK Rl GHT_SH FT =
static final int DOM VK LEFT META =
static final int DOM VK Rl GHT META =
static final int DOM VK CAPS LOCK =
static final int DOM VK DELETE =
static final int DOM VK END =

56

0x0;

0x01;
0x02;
0x03;
0x04;
0x05;
0x06;
0x07;
0x08;
0x009;
OxO0A;
0xO0B;

org/w3c/dom/events/TextEvent.java:

public static final int DOM VK _ENTER = 0x0¢C,
public static final int DOM VK _ESCAPE = 0x0D;
public static final int DOM VK _HOVE = OxOE;
public static final int DOM VK_| NSERT = OxOF;
public static final int DOM VK _NUM LOCK = 0x10;
public static final int DOM VK _PAUSE = 0x11;
public static final int DOM VK PRI NTSCREEN = 0x12;
public static final int DOM VK _SCROLL_LOCK = 0x13;
public static final int DOM VK _LEFT = 0x14;
public static final int DOM VK _RI GHT = 0x15;
public static final int DOM VK _UP = 0x16;
public static final int DOV VK _DOMNN = 0x17;
public static final int DOM VK _PAGE_DOMN = 0x18;
public static final int DOM VK _PAGE_UP = 0x19;
public static final int DOM VK F1 = Ox1A;
public static final int DOM VK _F2 = 0x1B;
public static final int DOM VK _F3 = 0x1C;
public static final int DOM VK F4 = 0x1D;
public static final int DOM VK_F5 = Ox1E;
public static final int DOM VK _F6 = Ox1F;
public static final int DOM VK _F7 = 0x20;
public static final int DOM VK _F8 = 0x21;
public static final int DOM VK _F9 = 0x22;
public static final int DOM VK F10 = 0x23;
public static final int DOM VK F11 = 0x24;
public static final int DOM VK F12 = 0x25;
public static final int DOM VK F13 = 0x26;
public static final int DOM VK F14 = 0x27;
public static final int DOM VK F15 = 0x28;
public static final int DOM VK F16 = 0x29;
public static final int DOM VK F17 = Ox2A;
public static final int DOM VK F18 = 0x2B;
public static final int DOM VK _F19 = 0x2C,
public static final int DOM VK _F20 = 0x2D;
public static final int DOM VK F21 = Ox2E;
public static final int DOM VK _F22 = Ox2F;
public static final int DOM VK F23 = 0x30;
public static final int DOM VK F24 = 0x31;

public String getQutputString();
public void setQutputString(String outputString);

public int getKeyVal();
public void setKeyVal (int keyVal);

public int getVirtKeyVal ();
public void setVirtKeyVal (int virtKeyVal);

publ i ¢ bool ean get Vi si bl eQut put Gener at ed() ;
public void setVisibl eQut put Gener at ed(bool ean vi si bl eQut put Gener at ed) ;

publ i c bool ean get NunPad();
public void set NunPad(bool ean nunPad);

publ i ¢ bool ean checkMdifier(int nodifier);

public void initTextEvent(String typeArg,

57

org/w3c/dom/events/MutationEvent.java:

bool ean canBubbl eAr g,

bool ean cancel abl eAr g,

Abstract Vi ew vi ewAr g,

int detail Arg,

String outputStringArg,

int keyVal Arg,

int virtKeyVal Arg,

bool ean vi si bl eQut put Gener at edAr g,
bool ean nunPadArg) ;

public void inithMdifier(int nodifier,

bool ean val ue);

or g/w3c/dom/events/M utationEvent.java:

package org.w3c.dom events;

i mport org.w3c. dom Node;

public interface Mitati onEvent extends Event {
/1 attrChangeType

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

publ i

Cc
Cc
C

static final short MODI FI CATI ON = 1;
static final short ADDI TI ON = 2;
static final short REMOVAL = 3;

Node get Rel at edNode();
String getPrevVal ue();
String get Newval ue();
String get AttrName();
short getAttrChange();

void initMitati onEvent(String typeArg,
bool ean canBubbl eAr g,
bool ean cancel abl eAr g,
Node rel at edNodeAr g,
String prevVal ueArg,
String newval ueAr g,
String attrNaneArg,
short attrChangeArg);

58

Appendix D: ECMAScript Language Binding

Appendix D: ECMAScript Language Binding

This appendix contains the complete ECMA Script [ECMA Script] binding for the Level 3 Document
Object Model Events definitions.

Objects that implement the Event T ar get interface:
Functions of objects that implement the EventTar get interface:
addEventListener (type, listener, useCapture)
This function has no return value.
Thetype parameter isa String.
Thelistener parameter is an object that implements the EventL istener interface.
The useCaptur e parameter is a Boolean.
removeEventL istener (type, listener, useCapture)
This function has no return value.
Thetype parameter isa String.
Thelistener parameter is an object that implements the EventL istener interface.
The useCaptur e parameter is a Boolean.
dispatchEvent(evt)
This function returns a Boolean.
The evt parameter is an abject that implements the Event interface.
This function can raise an object that implements the EventException interface.
addGroupedEventListener (type, listener, useCapture, evtGroup)
This function has no return value.
Thetype parameter isa String.
Thelistener parameter is an object that implements the EventL istener interface.
The useCaptur e parameter is a Boolean.
The evtGroup parameter is an object that implements the EventGroup interface.
removeGroupedEventListener (type, listener, useCapture, evtGroup)
This function has no return value.
Thetype parameter isa String.
Thelistener parameter is an object that implements the EventL istener interface.
The useCaptur e parameter is a Boolean.
The evtGroup parameter is an object that implements the EventGroup interface.
canTrigger (type)
This function returns a Boolean.
Thetype parameter isa String.
isRegister edHer e(type)
This function returns a Boolean.
Thetype parameter isa String.
Objects that implement the EventGr oup interface:
Functions of objects that implement the EventGr oup interface:
isSameEventGroup(other)
This function returns a Boolean.
The other parameter is an object that implements the EventGr oup interface.

59

Appendix D: ECMAScript Language Binding

EventListener function:
This function has no return value. The parameter is an abject that implements the Event interface.
Properties of the Event Constructor function:
Event. CAPTURING_PHASE
The value of the constant Event. CAPTURING_PHASE is 1.
Event. AT_TARGET
The value of the constant Event. AT_TARGET is2.
Event.BUBBLING_PHASE
The value of the constant Event.BUBBLING_PHASE is 3.
Objects that implement the Event interface:
Properties of objects that implement the Event interface:
type
Thisread-only property isa String.
tar get
Thisread-only property is an object that implements the EventTar get interface.
currentTarget
Thisread-only property is an object that implements the EventTar get interface.
eventPhase
This read-only property isa Number.
bubbles
Thisread-only property isaBoolean.
cancelable
This read-only property isaBoolean.
timeStamp
This read-only property is an object that implements the Date interface.
Functions of objects that implement the Event interface:
stopPropagation()
This function has no return value.
preventDefault()
This function has no return value.
initEvent(eventTypeArg, canBubbleArg, cancelableAr g)
This function has no return value.
The eventTypeAr g parameter isa String.
The canBubbleArg parameter is a Boolean.
The cancelableAr g parameter is a Boolean.
Properties of the EventException Constructor function:
EventException.UNSPECIFIED_EVENT_TYPE_ERR
The value of the constant EventException.UNSPECIFIED_EVENT_TYPE_ERR isO.
Objects that implement the EventException interface:
Properties of objects that implement the EventException interface:
code
This property isa Number.
Objects that implement the DocumentEvent interface:
Functions of objects that implement the DocumentEvent interface:
createEvent(eventType)
This function returns an object that implements the Event interface.

60

Appendix D: ECMAScript Language Binding

The event Type parameter is a String.
This function can raise an object that implements the DOM Exception interface.
createEventGroup()
This function returns an object that implements the EventGroup interface.
Objects that implement the CustomEvent interface:
Objects that implement the CustomEvent interface have al properties and functions of the Event
interface as well as the properties and functions defined below.
Functions of objects that implement the CustomEvent interface:
setCurrentTar get(tar get)
This function has no return vaue.
Thetarget parameter is an object that implements the Node interface.
setEventPhase(phase)
This function has no return vaue.
The phase parameter isa Number .
Objects that implement the Ul Event interface:
Objects that implement the Ul Event interface have al properties and functions of the Event
interface as well as the properties and functions defined below.
Properties of objects that implement the Ul Event interface:
view
This read-only property is an object that implements the AbstractView interface.
detail
This read-only property isa Number.
Functions of objects that implement the Ul Event interface:
initUl Event(typeArg, canBubbleArg, cancelableArg, viewArg, detail Arg)
This function has no return value.
ThetypeArg parameter isa String.
The canBubbleArg parameter is a Boolean.
The cancelableAr g parameter is a Boolean.
The viewAr g parameter is an object that implements the AbstractView interface.
The detail Arg parameter isaNumber.
Objects that implement the M ouseEvent interface:
Objects that implement the M ouseEvent interface have all properties and functions of the Ul Event
interface as well as the properties and functions defined below.
Properties of objects that implement the M ouseEvent interface:
screenX
This read-only property isa Number.
screenY
This read-only property isa Number.
clientX
This read-only property isa Number.
clienty
This read-only property isa Number.
ctrikKey
Thisread-only property isaBoolean.
shiftKey
Thisread-only property isaBoolean.

61

Appendix D: ECMAScript Language Binding

altkey
Thisread-only property isaBoolean.
metaK ey
Thisread-only property isaBoolean.
button
This read-only property isa Number.
relatedTarget
Thisread-only property is an object that implements the EventTar get interface.
Functions of objects that implement the M ouseEvent interface:
initM ouseEvent(typeArg, canBubbleArg, cancelableArg, viewAr g, detail Arg, screenXArg,
screenYArg, clientXArg, clientYArg, ctriKeyArg, altKeyArg, shiftKeyArg, metaK eyArg,
buttonArg, relatedTar getArg)
This function has no return value.
ThetypeArg parameter isa String.
The canBubbleArg parameter is a Boolean.
The cancelableAr g parameter is a Boolean.
The viewAr g parameter is an object that implements the AbstractView interface.
The detail Arg parameter isaNumber.
The screenXArg parameter isa Number .
The screenY Arg parameter isa Number .
The clientXArg parameter isaNumber.
The clientY Arg parameter isaNumber.
The ctriKeyArg parameter is a Boolean.
The altK eyArg parameter is a Boolean.
The shiftk eyAr g parameter is a Boolean.
The metaK eyArg parameter is a Boolean.
The buttonArg parameter isa Number .
TherelatedTargetArg parameter is an object that implements the EventTar get interface.
Properties of the TextEvent Constructor function:
TextEvent.DOM_VK_UNDEFINED
The value of the constant TextEvent.DOM_VK_UNDEFINED is 0xO0.
TextEvent.DOM_VK_RIGHT_ALT
The value of the constant TextEvent. DOM_VK_RIGHT_ALT is0x01.
TextEvent.DOM_VK_LEFT_ALT
The value of the constant TextEvent. DOM_VK_LEFT_ALT is0x02.
TextEvent.DOM_VK_LEFT_CONTROL
The vaue of the constant TextEvent. DOM_VK_LEFT_CONTROL is0x03.
TextEvent.DOM_VK_RIGHT_CONTROL
The value of the constant TextEvent.DOM_VK_RIGHT_CONTROL is0x04.
TextEvent.DOM_VK_LEFT_SHIFT
The vaue of the constant TextEvent.DOM_VK_LEFT_SHIFT is 0x05.
TextEvent.DOM_VK_RIGHT_SHIFT
The vaue of the constant TextEvent.DOM_VK_RIGHT_SHIFT is 0x06.
TextEvent.DOM_VK_LEFT_META
The value of the constant TextEvent.DOM_VK_LEFT_META is0x07.

62

Appendix D: ECMAScript Language Binding

TextEvent.DOM_VK_RIGHT_META

The value of the constant TextEvent.DOM_VK_RIGHT_META is 0x08.
TextEvent.DOM_VK_CAPS LOCK

The value of the constant TextEvent.DOM_VK_CAPS _LOCK is0x09.
TextEvent.DOM_VK_DELETE

The value of the constant TextEvent.DOM_VK_DELETE isOx0A.
TextEvent.DOM_VK_END

The value of the constant TextEvent.DOM_VK_END is 0x0B.
TextEvent.DOM_VK_ENTER

The value of the constant TextEvent. DOM_VK_ENTER is 0x0C.
TextEvent.DOM_VK_ESCAPE

The value of the constant TextEvent.DOM_VK_ESCAPE is 0xOD.
TextEvent.DOM_VK_HOME

The value of the constant TextEvent. DOM_VK_HOME is OxOE.
TextEvent.DOM_VK_INSERT

The value of the constant TextEvent.DOM_VK_INSERT is OxOF.
TextEvent.DOM_VK_NUM_LOCK

The value of the constant TextEvent.DOM_VK_NUM_L OCK is0x10.
TextEvent.DOM_VK_PAUSE

The value of the constant TextEvent.DOM_VK_PAUSE is0x11.
TextEvent.DOM_VK_PRINTSCREEN

The value of the constant TextEvent.DOM_VK_PRINTSCREEN is 0x12.
TextEvent.DOM_VK_SCROLL_LOCK

The value of the constant TextEvent.DOM_VK_SCROLL_LOCK is0x13.
TextEvent.DOM_VK_LEFT

The value of the constant TextEvent. DOM_VK_LEFT is0x14.
TextEvent.DOM_VK_RIGHT

The value of the constant TextEvent. DOM_VK_RIGHT is 0x15.
TextEvent.DOM_VK_UP

The value of the constant TextEvent. DOM_VK_UP is 0x16.
TextEvent.DOM_VK_DOWN

The value of the constant TextEvent.DOM_VK_DOWN is 0x17.
TextEvent.DOM_VK_PAGE_DOWN

The value of the constant TextEvent.DOM_VK_PAGE_DOWN is 0x18.
TextEvent.DOM_VK_PAGE_UP

The value of the constant TextEvent.DOM_VK_PAGE_UP is0x19.
TextEvent.DOM_VK_F1

The value of the constant TextEvent. DOM_VK_F1isOx1A.
TextEvent.DOM_VK_F2

The value of the constant TextEvent.DOM_VK_F2is0x1B.
TextEvent.DOM_VK_F3

The value of the constant TextEvent. DOM_VK_F3is0x1C.
TextEvent.DOM_VK_F4

The value of the constant TextEvent. DOM_VK_F4is0x1D.
TextEvent.DOM_VK_F5

The value of the constant TextEvent.DOM_VK_F5isOx1E.

63

Appendix D: ECMAScript Language Binding

TextEvent.DOM_VK_F6

The value of the constant TextEvent.DOM_VK_F6 is Ox1F.
TextEvent.DOM_VK_F7

The value of the constant TextEvent.DOM_VK_F7 is 0x20.
TextEvent.DOM_VK_F8

The value of the constant TextEvent.DOM_VK_F8is0x21.
TextEvent.DOM_VK_F9

The value of the constant TextEvent.DOM_VK_F9 is 0x22.
TextEvent.DOM_VK_F10

The value of the constant TextEvent.DOM_VK_F10is 0x23.
TextEvent.DOM_VK_F11

The value of the constant TextEvent.DOM_VK_F11 is 0x24.
TextEvent.DOM_VK_F12

The value of the constant TextEvent.DOM_VK_F12 is 0x25.
TextEvent.DOM_VK_F13

The value of the constant TextEvent.DOM_VK_F13is 0x26.
TextEvent.DOM_VK_F14

The value of the constant TextEvent.DOM_VK_F14 is 0x27.
TextEvent.DOM_VK_F15

The value of the constant TextEvent.DOM_VK_F15is 0x28.
TextEvent.DOM_VK_F16

The value of the constant TextEvent.DOM_VK_F16 is 0x29.
TextEvent.DOM_VK_F17

The value of the constant TextEvent.DOM_VK_F17 isOx2A.
TextEvent.DOM_VK_F18

The value of the constant TextEvent.DOM_VK_F18is 0x2B.
TextEvent.DOM_VK_F19

The value of the constant TextEvent.DOM_VK_F19is0x2C.
TextEvent.DOM_VK_F20

The value of the constant TextEvent.DOM_VK_F20is0x2D.
TextEvent.DOM_VK_F21

The value of the constant TextEvent.DOM_VK_F21 is Ox2E.
TextEvent.DOM_VK_F22

The value of the constant TextEvent.DOM_VK_F22 is Ox2F.
TextEvent.DOM_VK_F23

The value of the constant TextEvent.DOM_VK_F23is 0x30.
TextEvent.DOM_VK_F24

The value of the constant TextEvent.DOM_VK_F24 is Ox31.

Objects that implement the TextEvent interface:

Objects that implement the TextEvent interface have al properties and functions of the Ul Event
interface as well as the properties and functions defined below.
Properties of objects that implement the TextEvent interface:

outputString

This property isa String.
keyVal
This property isa Number.

64

Appendix D: ECMAScript Language Binding

virtKeyVal
This property isa Number.
visibleOutputGenerated
This property is a Boolean.
numPad
This property is a Boolean.
Functions of objects that implement the TextEvent interface:
checkM odifier (modifier)
This function returns a Boolean.
The modifier parameter isa Number .
initTextEvent(typeArg, canBubbleArg, cancelableArg, viewArg, detailArg,
outputStringArg, keyValArg, virtKeyValArg, visibleOutputGeneratedAr g, numPadAr g)
This function has no return value.
ThetypeArg parameter isa String.
The canBubbleArg parameter is a Boolean.
The cancelableAr g parameter is a Boolean.
The viewAr g parameter is an object that implements the AbstractView interface.
The detail Arg parameter isaNumber.
The outputStringArg parameter isa String.
The keyValArg parameter isaNumber.
ThevirtKeyValArg parameter isa Number.
The visibleOutputGener atedArg parameter is a Boolean.
The numPadAr g parameter is a Boolean.
initM odifier (modifier, value)
This function has no return value.
The modifier parameter isa Number .
The value parameter is a Boolean.
Properties of the M utationEvent Constructor function:
MutationEvent. MODIFICATION
The vaue of the constant M utationEvent. MODIFICATION is 1.
MutationEvent. ADDITION
The vaue of the constant M utationEvent. ADDITION is 2.
MutationEvent. REM OVAL
The vaue of the constant M utationEvent. REMOVAL is 3.
Objects that implement the M utationEvent interface:
Objects that implement the M utationEvent interface have all properties and functions of the Event
interface as well as the properties and functions defined below.
Properties of objects that implement the M utationEvent interface:
relatedNode
Thisread-only property is an object that implements the Node interface.
prevValue
Thisread-only property isa String.
newValue
Thisread-only property isa String.
attrName
Thisread-only property isa String.

65

Appendix D: ECMAScript Language Binding

attrChange
This read-only property isa Number.
Functions of objects that implement the M utationEvent interface:
initM utationEvent(typeArg, canBubbleAr g, cancelableArg, relatedNodeAr g,
prevValueArg, newValueArg, attrNameArg, attr ChangeArg)
This function has no return value.
ThetypeArg parameter isa String.
The canBubbleArg parameter is a Boolean.
The cancelableAr g parameter is a Boolean.
TherelatedNodeAr g parameter is an object that implements the Node interface.
The prevValueArg parameter isa String.
The newValueArg parameter isa String.
The attr NameAr g parameter isa String.
The attr ChangeArg parameter isaNumber .

66

Glossary

Glossary

Editors:
Arnaud Le Hors, W3C
Robert S. Sutor, IBM Research (for DOM Level 1)

Several of the following term definitions have been borrowed or modified from similar definitions in other
Wa3C or standards documents. See the links within the definitions for more information.

ancestor
An ancestor node of any node A is any node above A in atree mode of adocument, where "above"
means "toward the root."

child
A child is an immediate descendant node of a node.

descendant
A descendant node of any node A is any node below A in atree model of adocument, where "below"
means "away from the root."

document element
Thereisonly one document element in a Docurment . This element node is a child of the Docunent
node. See[Well-Formed XML Documentgin XML [XML 1.0).

document order
Thereis an ordering, document order, defined on all the nodes in the document corresponding to the
order in which the first character of the XML representation of each node occursin the XML
representation of the document after expansion of general entities. Thus, the[document element|[p.67]
node will be the first node. Element nodes occur before their children. Thus, document order orders
element nodes in order of the occurrence of their start-tag in the XML (after expansion of entities).
The attribute nodes of an element occur after the element and before its children. The relative order
of attribute nodes is implementation-dependent.

DOM Level O
Theterm "DOM Level 0" refersto amix (not formally specified) of HTML document functionalities
offered by Netscape Navigator version 3.0 and Microsoft Internet Explorer version 3.0. In some
cases, attributes or methods have been included for reasons of backward compatibility with *"DOM
Level 0".

sibling
Two nodes are siblingsif they have the same parent node.

tokenized
The description given to various information items (for example, attribute values of various types,
but not including the StringType CDATA) after having been processed by the XML processor. The
process includes stripping leading and trailing white space, and replacing multiple space characters
by one. See the definition of tokenized type.

well-formed document
A document iswell-formed if it istag valid and entities are limited to single elements (i.e., single
sub-trees).

XML name
See[XML namgin the XML specification ([XML 1.0)).

67

http://www.w3.org/TR/2000/REC-xml-20001006#dt-root
http://www.w3.org/TR/2000/REC-xml-20001006#NT-Name

Glossary

68

References

References

For the latest version of any W3C specification please consult the list of \WW3C Technical Reportd available
at http://www.w3.0org/TR.

F.1: Normativereferences

DOM Level 3Core
W3C (World Wide Web Consortium) [Document Object Model Level 3 Core Specification, January
2002. Available at http://www.w3.0org/ TR/DOM-L evel-3-Core
DOM Leve 2 Events
W3C (World Wide Web Consortium) [Document Object Model Level 2 Events Specification,
November 2000. Available at http://www.w3.0rg/TR/2000/REC-DOM-L evel-2-Events-20001113
DOM Level 2 Views
W3C (World Wide Web Consortium) [Document Object Model Level 2 Views Specification,
November 2000. Available at http://www.w3.0rg/ TR/2000/REC-DOM-L evel-2-Views-20001113
ECMAScript
ISO (International Organization for Standardization). | SO/IEC 16262:1998.|[ECMA Script Language|
[Specification] Available from ECMA (European Computer Manufacturers Association) at
http://www.ecma.ch/ecmal/STAND/ECMA-262.HTM
Java
Sun Microsystems Inc. [The Java Language Specification, James Gosling, Bill Joy, and Guy Steele,
September 1996. Available at http://java.sun.com/docs/books/jls
OMGIDL
OMG (Object Management Group) IDL (Interface Definition Language) defined in The Common
Object Request Broker: Architecture and Specification, version 2.3.1, October 1999. Available from
http://www.omg.org

F.2: Informative references

XML 1.0
W3C (World Wide Web Consortium) [Extensible Markup Language (XML) 1.0, October 2000.
Available at http://www.w3.0rg/TR/2000/REC-xmI-20001006

69

http://www.w3.org/TR
http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/2000/REC-DOM-Level-2-Events-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Views-20001113
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://java.sun.com/docs/books/jls
http://www.omg.org/
http://www.w3.org/TR/2000/REC-xml-20001006

F.2: Informative references

70

| ndex

laddEventListengr

altkey

il

”
¥

ttrChangg

ubbles

i

ancelable

ii
D

heckModifi

lient

[¢)

ctrlKey

[descendattt0, 67

|[documentlement

DOM LevelQ9, 23, 25, 39, 67

IDOM Level 3Corg9, 23, 25,
29, 36, 39, 69

[DOM VK DOWN

o O O O O [O [O
ol |0 [O 10 [Of |O
< I LIS (LZ
< I < < 1< <
~ 1A A A AR
T (M| (M |mf (T (M
N 1D = I I B I B (7))
\ S 4

>

T

i=sl
o O o o 0O QO O O O
O ol |Of [Of [O O (O
< < I (IS (Z
< < I <1<l 1< <
x ~ A A |A AR
T T (M [(mf (M (M [T
O =L NN A E R
<

OM_VK F3

9]
®)
<
<
X
o

O] [O©
Q| |10
< (Z
< I<
AN A
— T
m ®)
T

=l

]
]

DOM VK LEFT MET

Index

[addGroupedEventListener
lancestds, 10, 67

attrName

UBBLING PHAS

canTriggelr
[chiTd 36, 67

createEvent

currentTarget

i I

etal
ocumenbrde

[DOM Level 2Event$9, 23, 25, 36, 39,
69

i

[DOM_VK_ CAPS_LOCK

[DOM VK _END|

OM_VK F

OM VK F

[DOM_VK LEFT_ALT|

DOM_VK LEFT SHIF

71

ADDITION
AT TARGE

[=2
>
>

—+
P

O]
=
1]
Q
-
)
[Tl
<
D
>
—
©
=
o

——

©

ustomEvent

I

ispatchEvent

i

ocumentEvent

i

IDOM Level 2Viewd23, 69

DOM_VK DELET

o O [O
ol [0 |O
g g (=
< < <
~ X |[R
T M m
o B = I =<
Ql (5

=

byl

v/
o
<
<
A
-
2y

o 19 (O (O
o O [Of |10
=< I E(I < I
o I S I S I
AN AN AN
mf [T |7 (M
N Y s

O
o)
<
<
A
:|I'

DOM_VK_INSER

[DOM_VK_LEFT_CONTROL
DOM_VK NUM LOC

Index

[DOM_VK_PAGE_DOWN [DOM_VK_PAGE_UPR [DOM_VK_PAUSE

[DOM VK PRINTSCREEN [DOM VK RIGHT]| [DOM VK RIGHT ALT]|
[DPOM VK RIGHT CONTROI [DOM VK RIGHT META [DPOM VK RIGHT SHIFT
[DOM VK SCROLL LOCK [DOM VK UNDEFINED DOM VK UB
ECMAScCrip Even
[EventListendr [eventPhage

EventTarget

handleEvent

initModifier] initMouseEvert
[initMutationEvent initTextEven initUIEven
lisRegisteredHele [sSameEventGrolip
Java

eyVal
[MODIFICATION]| MouseEvert

MutationEvent

hewValug
[preventDefault prevvalug
relatedNode [relatedTargét

[removeEventListener [femoveGroupedEventListemer

72

Index

[setCurrentTargkt
[setEventPhabe [siblind 10, 67
[stopPropagatign

ftypd

[UNSPECIFIED_EVENT TYPE ERR

irtkeyVval [visibleOutputGeneratgd

well-formeddocumerjt

XML 1.467, 67,69 XML nam¢l9, 19, 67

73

	Document Object Model †DOM‡ Level 3 Events Specification
	Version 1.0
	W3C Working Draft 08 February 2002
	Abstract
	Status of this document
	Table of contents

	Expanded Table of Contents
	Copyright Notice
	W3C Document Copyright Notice and License
	W3C Software Copyright Notice and License

	1. Document Object Model Events
	1.1. Overview of the DOM Level 3 Event Model
	1.1.1. Terminology

	1.2. Description of event flow
	1.2.1. Event listeners activation
	1.2.2. Event capture
	1.2.3. Event bubbling
	1.2.4. Event cancelation
	1.2.5. EventListener Grouping

	1.3. Event listener registration
	1.3.1. Event registration interfaces
	1.3.2. Interaction with HTML 4.0 event listeners

	1.4. Basic interfaces
	1.4.1. Event creation

	1.5. Event module definitions
	1.5.1. User Interface event types
	1.5.2. Mouse event types
	1.5.3. Text events
	1.5.4. Mutation event types
	1.5.5. HTML event types

	1.6. Issues

	Appendix A: Changes
	A.1: Changes between DOM Level 2 Events and DOM Level 3 Events
	A.1.1: Changes to DOM Level 2 Events interfaces
	A.1.2: New Interfaces

	Appendix B: IDL Definitions
	
	events.idl:

	Appendix C: Java Language Binding
	
	org/w3c/dom/events/EventException.java:
	org/w3c/dom/events/EventTarget.java:
	org/w3c/dom/events/EventGroup.java:
	org/w3c/dom/events/EventListener.java:
	org/w3c/dom/events/Event.java:
	org/w3c/dom/events/DocumentEvent.java:
	org/w3c/dom/events/CustomEvent.java:
	org/w3c/dom/events/UIEvent.java:
	org/w3c/dom/events/MouseEvent.java:
	org/w3c/dom/events/TextEvent.java:
	org/w3c/dom/events/MutationEvent.java:

	Appendix D: ECMAScript Language Binding
	Glossary
	References
	F.1: Normative references
	F.2: Informative references

	Index

