®)
W5C
XForms 1.0
W3C Working Draft 18 January 2002

Thisversion:
http://www.w3.0rg/TR/2002/WD-xforms-20020118 (single HTML file, diff-marked HTML, PDF, Zip archive)
Latest version:
http://www.w3.0rg/TR/xforms/
Previousversions:
http://mww.w3.org/TR/2001/WD-xforms-20011207
Editors:
Micah Dubinko , Cardiff <mdubinko@Cardiff.com>
Josef Dietl , Mozquito Technologies <josef @mozquito.com>
Leigh L. Klotz, Jr. , Xerox Corporation <L eigh.Klotz@pahv.xerox.com>
Roland Merrick , IBM <Roland_Merrick@uk.ibm.com>
T.V.Raman, IBM <tvraman@al maden.ibm.com>

Copyright © 2002 W3C® (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark, document use, and
software licensing rules apply.

Abstract

XForms is an XML application that represents the next generation of Forms for the Web. By splitting traditional
XHTML forms into three parts - data model, instance data, and user interface - it separates presentation from
content, allows reuse, gives strong typing - reducing the number of round-trips to the server, as well as offering
device independence and a reduced need for scripting.

XForms s not a free-standing document type, but is intended to be integrated into other markup languages, such as
XHTML.

Status of this Document

Last Update: $Date: 2002/01/16 23:32:13 $

This section describes the status of this document at the time of its publication. Other documents may supersede this
document. The latest status of this document seriesis maintained at the W3C.

Thisis a W3C Last Call Working Draft of the XForms 1.0 specification, for review by W3C members and other
interested parties. The Last Call review period ends on 22 February 2002 at 2359Z. Please send review comments
before the end of the review period to www-forms-editor@w3.org. This list is archived at
http://lists.w3.org/Archives/Public/www-forms-editor/.

Following completion of Last Call, the XForms Working Group has agreed to advance the specification according to
the following exit criteria:

1. Sufficient reports of implementation experience have been gathered to demonstrate that X Forms processors based
on the specification are implementabl e and have compatible behavior.

2. Animplementation report shows that there is at least one implementation of each feature.

http://www.w3.org/TR/2002/WD-xforms-20020118/
http://www.w3.org/TR/2002/WD-xforms-20020118/index-all.html
http://www.w3.org/TR/2002/WD-xforms-20020118/index-all.html
http://www.w3.org/TR/2002/WD-xforms-20020118/index-all.html
http://www.w3.org/TR/2002/WD-xforms-20020118/index-all.html
http://www.w3.org/TR/2002/WD-xforms-20020118/index-diff.html
http://www.w3.org/TR/2002/WD-xforms-20020118/index-diff.html
http://www.w3.org/TR/2002/WD-xforms-20020118/WD-xforms-20020118.zip
http://www.w3.org/TR/2002/WD-xforms-20020118/WD-xforms-20020118.zip
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/2001/WD-xforms-20011207/
mailto:mdubinko@Cardiff.com
mailto:mdubinko@Cardiff.com
mailto:mdubinko@Cardiff.com
mailto:josef@mozquito.com
mailto:josef@mozquito.com
mailto:josef@mozquito.com
mailto:Leigh.Klotz@pahv.xerox.com
mailto:Leigh.Klotz@pahv.xerox.com
mailto:Leigh.Klotz@pahv.xerox.com
mailto:Roland_Merrick@uk.ibm.com
mailto:Roland_Merrick@uk.ibm.com
mailto:Roland_Merrick@uk.ibm.com
mailto:tvraman@almaden.ibm.com
mailto:tvraman@almaden.ibm.com
mailto:tvraman@almaden.ibm.com
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.lcs.mit.edu/
http://www.inria.fr/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-documents-19990405
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://www.w3.org/Consortium/Legal/copyright-software-19980720
http://lists.w3.org/Archives/Public/www-forms-editor/

3. Formal responses to all comments received by the Working Group.

If these criteria are met, the specification will advance to Proposed Recommendation, otherwise the specification
will enter a Candidate Recommendation phase to ensure that the above criteria are met.

This document is a W3C Working Draft for review by W3C members and other interested parties. It is a draft
document and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use
W3C Working Drafts as reference material or to cite them as other than "work in progress'. A list of current public
W3C Working Drafts can be found at http://www.w3.0rg/TR.

This document has been produced as part of the W3C HTML Activity.
Please send detailed comments on this document to www-forms@wa3.org, the public forum for discussion of the

W3C's work on web forms. To subscribe, send an email to the above address with the word subscribe in the subject
line (include the word unsubscribe if you want to unsubscribe). The archive for thelist is accessible online.

http://www.w3.org/TR/
http://www.w3.org/MarkUp/
http://www.w3.org/MarkUp/
http://www.w3.org/MarkUp/
mailto:www-forms@w3.org
http://lists.w3.org/Archives/Public/www-forms/

Table of Contents

1 About the XFOrmS 1.0 SPECITICALIONc.eiieeeiriereee ettt bbb bbb st e e sn e eneas 7
Rt oo T o S 7
1.2 Reading the SPECIfICAIONcccciiiieie e e s se e e resresnenne 7
1.3 How the Specification iS Organizedccccevierereieereieeere s sre e 7
1.4 Documentation CONVENTIONSeoiieeiieiiieeeeeeeeeeeesseeessete e e seteesseeessabeessaseeesaseeessbeesessseesaeeessrees 7

2 INtrOTUCTTI ONEO X OIS ...ttt et e ettt e st e e ettt e s eat e e s sabeessbeessaseesssaseessabesssassesssbsnasanbensssesssasenesantensn 8
2.1 Separating Purpose From PreSentalion ...t se e e 8
2.2 Current ApproaCh: HTML ..ot 9
G I =0 N (o T o T (o1 1 10
2.4 Providing XML [INStANCE DELA ...ccccvevvereiriirieiiesiesiesieseeeeeereeseesesses e ssessesseseestesseseessessessesssssssesneens 12
2.5 CONSraiNiNg VAIUBSooiiuiiiiiieiiiei ettt b et ettt bt 13
2.6 Multiple FOrmS pPer DOCUMENTcccoeirieirieirtiesieessese s ese et see s ss s ss e s s s s s nnens 14

S D OCUMENT SEIUCTUIE........vveiiee i eetttiee e eeet e e e e s e e e e s b b e e e e s seabba b e e s s s sbabeeessasbabaeeesesasbaaeses s sbbaeeassassbsbeeessassbenessesnnres 15
3.1 The XFOrmS NAMESPACEccccererirtiriereirtiriesie ettt st sbesbesaesaesbesbeseensebe e e e eneeaesaeenesresseens 15
3.2 Horizontally Applicable MarkUp ..o e 15
G TG T, oo = 15
I T 01 =T < TR 16
RS o 0 1< 1= ST 16
I TS U1 o)1 0L (RO 16
G A o] A7 TSSO 17
3.8 XFOIMS @GN0 XLINK oottt ettt sttt st e sbe e s s b e s sbe s s b e s saeeesbessatesbessaesssbeesrensares 17

38.1 XLink Conformance and EXamMPlES ..o 18

APrOCESSINGIMOUEcviietiiete bbbt et bbbt b et b et bt b e e b a et et 18
4.1 EVENES OVEIVIEW ..ot etie ettt e e sttt e s et e e e s te e s s beeesaatesssabeessbeeesasbesssassessabenssasbessasenessbenean 19
4.2 INITIAZAHON BEVENLS .ottt ettt e e s et e s st e e s s aae e s sabe e s seaeesssbbeessabeesssbessesenessabenean 19

2 A 4 10 1.4 5 1 160 (= [0 0= 1 [ox 19
422 XFormSMOCEINILIAIIZE oo s e 19
423 XTOrmMSINItIAiZEDONE oo e s n 20
424 XFOrMSIUIINITIAIZE oottt e et e e st e e s e e e s et e e e sanessbaeeeas 20
425 xformsformCoOntrollNItIAliZE .eeeeeeeeeeeee e 20
4.3 INEETACHION EVENES ..ottt et e st e s et e e s s ba e s s baeesesbe s s sabssssbeessasbesssssnessbenesanbessanes 21
431 DOM MUELION EVENES oottt es st sae s s eba e s senee s s enees 21
432 xformsnext and XFOrMSPrEVIOUScccccocvieiiiieiirise et 21
4.3.3 xformsfocus and XFOrMSDIUr .eeooeiieecee e s 22
F G T D 4 1001 415X o 1LYz (=S RTRTT 22
435 XformSvalUEChANGING .ooceieeirieirieieete ettt 22
4.3.6 xformsvalueChanged ... e 23
R A« 1011 415X o (0] |11 £ A 23
R T e (1 1 115 o 0] = = 24
439 xformsinsert and XfOrMSIAEIEIE oooeiiiieceecee e 24
43.10 xformsiselect and XFOrMSIESEIECE ...oooooeeieeeee e 24
4311 xformshelp and XfOrmShint ... 24
I D ¢ 0111115 1= ¢ RS 25
I G D 4 011 115 YZ Lo 25
30t I 4 0 1 .4 o 11017z Lo 25
R LS T 4 {0 04 S (= 1 (== 26
G S T 4 (010 1 S (=Y L0 =1 (=TT 26
I D 4 (6] 1 1SN (=.0= (010 | = (TR 26
T I D 4 01 1 15 (== = AR 27
O o1 0 0TS U o1 28
g R a0V 1 1S U o] 1 1 28

4.4.2 application/X-www-form-urlencoded ... 28

7 T 4101 7= 74 {04 1 = - S 29

QA4 EXUXIMT bbbt 30
4441 Binary CONENT s 30

I ¢ (o G 1 o o= (o) 1 SRR 30
451 xforms:schemaConStraiNtSEITOr ...oooouiiiiiieee e e e 31

452 XFOrMSIrAVEISAIEITOr oot e 31

453 xformsinvalidDatatyPEEITOr ..ooeoececeeceeee e e 31

LoD 1Y/ == T 31
51 XML Schema Built-in DaalyPEScccooreerrerieereeierieiesiee ettt sttt st s s 31
5.2 XFOIMS DELBIYPES ...ooiviiriiieriiitiiesiese ettt s sttt sr e r e r e e r e ne s 33
521 XFOrMSIISHIEEM et et e 33

522 XFOrMSIISHIEMS oot s 33

B ONSITAINES. ...ttt ettt st se et se et s e b st e st e st st e st st e e e b e se e b e se ek e se ekt s e ek e s A e st e e e se e b eRe e b e Rt e b et e b e neebene et e neebeneebeneerens 33
6.1 XFOrMS CONSITAINIS ...eeiviietirietereeie sttt sttt sttt sttt se et seebe e beseebeseesesbenesbe e sbe e ebenenbeneas 33
B.1. 1 Y PB eieeeeeeeeeeeeeeheeeeeeR et er e r e e sn e r e re e 33

B.1.2 reAJONIY o 34

LN G T 1 o U111 o [V 34

B.1.4 TElEVANT e b bbb e b e e 35

B.15 CAlCUIAEIE oot et e et 35

B.1.6 ISV ot 35

L O 117 < oo | 36

L300 I N 1111 0 o =S 36

6.2 SChEMA CONSIFAINIS oouiitiieiieiieie ettt ettt e et besae et sbesbeseesb e bese e e e e e e eneens 36
6.21 ALOMIC DEAYPE eooeiiiiieiiieie ettt et b e e e 36

6.3 Additional Schema EXAMPIES ..ot s nnen 37
6.3.1 Closed ENUMEIEHON ..oocerieiiieiriee ettt st st st sttt 37

6.3.2 OpeN ENUMENBLION .ooeciiieiieeriee ettt ettt 38

LS3C TG TR 1 2T o TSRS 38

B.3.4 LISIS oot ettt et e et st be e tenaete e tenaerenean 38

L = T 0T 11 o S 38
B.4.1 DINA oot ettt et st b et 38

6.4.2 Rules For Binding EXPreSSiONSccccccievcrcieieereeisesesesieseseeseeseseesssseseesesssssennes 39

6.4.3 Binding REFEIENCES ..o e 39

7 XPath EXPressiONSIN XOMMIScouiiiiieeierieieri ettt ettt b et sa st se st sb et bt b e e b e seebeneebeseebeseenesneneas 40
7.1 XPath DaBYPES ..oevveeieeerieirieisesesteseesesessessesessesessssessesessasessesessessasassesessesessesessesessensssensssensssensases 40
7.2 INSLANCE DELA ...oceeieieiece et e e st se e st r e s ae e bbb an e n e n e e e 40
7.3 EVAIUBLION CONLEXE .oviiiiiiieeiiieieieceesee ettt ettt b et b et s et e st st e e b ene b e e ssennenn 411
7.4 XForms Core FUNCHON LibIary ...ccccccocoiiiieiiiiisese e eseeseees e e see st sne e saeneenasneenesnens 42
741 B00lean MENOUS ..ottt s st ae st e ebeens 42
7411 boolean-from-String() oo 42

7.4.1.2 1 USSR 42

742 NUMDEr MENOUS .ot 42
7421 = (VL [R 42

7422 00T 42

7423 MBX() ettt bbbt b e bbbt nae e 42

7424 COUNE-NON-EBIMPLY() o 43

74.25 (o001 (USSR 43

743 SING MENOAS ..o e e 43
7431 0140] 1= 1 1Y/ (T 43

7432 1017 43

744 EXIENSION FUNCHONS .ottt ettt st ettt e ere e sreenaesreennens 43

S 00 010 a1 £ o] TSRS 44
S 00 T oo 11 | OO 44

L I < o <. OO 45

TR T (54 = == 46

S o 11 o | 47
8.5 UPIOAH bbb e R bt b et bbb bt enn 47
B8 TAINGE o ettt nr e r e rs 49
LS T o101 (oo T 49
LTS = U o]0 0T SRR 50
R T < 1< o1 (] <Y 50
ST "= 1= 1Y I 52
8.11 Common Markup for SEleCtion CONLIOIScociriiriiiriiriee e 53
S 75 00 Y o T T Lo - TR 53

S T 1 2 1 <1 o KRR 53
T TG T | <1 11 SRR 53
I S V7= | 1< 54
8.12 COMMON MEIKUD eeeeeeeeeeeiectiete st s et st e s et e e e s s s e s et e aeseestesteseensense e eneenenneeneenensesseneens 54
8.12.1 ComMMON ATIIDUIES oottt et e e e s et e e s e s s ebe e e s eate e s saeessareeeeas 54
8.12.2 Single Node Binding AMNDUIES ..o 55
8.12.3 Nodeset Binding AtHDULES ooiiiiiiiiie e e 55
8.12.4 Common Child ElEMENIS ..ot bee e 55
8.12.4.1 (07 (0] o T 55

8.12.4.2 NE D e 56

8.12.4.3 0T | P 56

8.12.4.4 = < P 57

8.12.45 LS L= 11 o] o 1T 57

L R o S WIS < 1 01 o T 57
LS 00 o [o S 58
LS T2 .Y (o o 58
LS T (= o] TSSOSOV UR PR URPRTPRPRION 59
0.3.1 REPEAL PrOCESSING coveoeerereeiereeieriete st st se ettt b et se et e b e bt sn s e e sre e nreneas 61

0.3.2 NESIEU REPEALS ooiieciiecieiee ettt sttt rens 62
SRS RC I VIS S 101 (= g &= IR 1 01 (= =011 o) 62

B0 Do T 15T X011 o 1 62
0 50 I o1 o 7= o o S 63
O 1= (== o TR 63
ORI (o= Lot U= TR 63
O (= Y7 1T F= (< TR 63
O ST < 1 e ol U RO 64
O TS o =" [0 64
T = AV = 1 L= 64
10.8 SUDMUTINSIANCE ..ttt ettt e sttt e et e st e e e eat e e seateeesabeessabaessasseessaseessbenesaseeesareness 65
ORI (== < {10 7= (o TS 65
10.10 SELREPEAICUISON ..viiveeeiteeeeteisteseeteststeseeteseetesaeseseesessesestesestesestesesteseetesesteseesessnsessnsessnsessesessesensens 66
0 T R 1 0T T 66
O T3 2 1< 1< (T 67
0 50 T (oo T = 67
O o T o OO P SOOI 67
JO.I5 IMESSATE .oeiirirrerriirireee ettt r st r bt s et r R e se e e e et e e R e e e e Rt R e Rt e R e R e R e R e e R ne e e e e rea 68
0 T G T (o) ISR 69
@001 0] 10= 0o TR 69
I T4 (0 04 T= g T I I <Y/ 69
O Ot O o 4 1 S = 7 o 69
11,12 XFOIrMS FUIL ettt ettt e s e e st e e e et e e e seaaeessaaeessbeeesans 70

11.2 Conformance DESCIHPLIONcoiuiiriiirieiriierie ettt bbb 70
11.21 Conforming XFOrMS PrOCESSOIS ...ccecoeiiiriiiirerentesiesie sttt 70

11.2.2 Conforming XFOrmS DOCUMENLS ...cccceeiiiiieiieee ettt 70

11.2.3 Conforming XFOrmsS GENEratOrScccccceveveerieieeierieeesesesesesteseestesseseesesseseseens 70

0SS 1= 1 1 70
Appendices

F S o 0= 4= N 0] 0 0] 1 1S 71

AL SChema fOr XLINK .ottt sttt e e s e sesbesaennesnen 84

A.2 Schema for XML EVENLS ..ot 85

B REFEIEINCES. ...ttt R R R R R R R R R e nenrenn 85

B.1 NOMELiVE REFEIENCESciiireiieriireieteee et 86

B.2 INfOrmative REFEIENCESoccviieiiieieesee s se e e srenrennenren 86

CRecalculation SeqUENCEATTONTIIM ..ot bbb et 87

C.1 Details on Creating the Master Dependency Directed Graphc.cccoeeienniennienseneeneenieens 87

C.2 Details on Creating the Pertinent Dependency Subgraph ... 88

C.3 Details on Computing Individual VErtiCESccccieveieiiiiieiisise s e e e re e e 89

C.4 Example of Calculation PrOCESSINGccccciiererieieeieeeeesesesestesesrestestessessessesaeseesssseessessssessessessens 89

D INPUEMOOES.......c.eeteeetirieteseet ettt ettt sttt s et b et b e b e e e b e e e bt £ e bt e e bt b e n e b e ne b e m e e b e e eb e e eb et enentenis 90

D.1 inputMode AtrDUE ValUE SYNEBXoocoerieiriiiriiirice et 20

D.2 USar AQENt BENAVION ..ottt bbb b 91

D.3 LISt Of TOKENSootieiuiieeiirietirie ittt b et b et bbb 91

[0 50 S o 1 o | AN I 2= 31 92

D.3.2 MOIfier TOKENS oo 92

D.4 Relationship to XML Schema pattern faCetScoeoeieiiiininereseree s 92

D5 EXAMPIES ottt bbbt e e 92

E Complete X FOrMSEXBMPIES.....c.ciuiiiteieeterecieret ettt b et b et b et b e bt b e e b e b e b e 92

E.1 XFOrMS 1N XHTML oottt 92

E.2 Editing Hierarchica Bookmarks USING XFOIMScccccoveiiriinieniecienie s seee e eenenns 94

FChangel0g (NON-NOIMELIVE)cceiueiiieieieeicee ettt e sa e e se s saesrestesbesrestetesee s enseneeneeneenennens 95

G AcknowledgmentS(NON-INOIMELIVE)cirririeirieireere ettt bt 96

H Production NOtES(NON-NOFMELIVE)ccueirieirieiriererie sttt sttt sttt sttt b e et eb e e ene s nnene 97

1 About the XForms 1.0 Specification

1.1 Background

Forms are an important part of the Web, and they continue to be the primary means for enabling interactive web
applications. Web applications and electronic commerce solutions have sparked the demand for better web forms
with richer interactions. XForms are the response to this demand and provide a new platform-independent markup
language for online interaction between an XForms Processor and a remote user agent. XForms are the successor to
HTML forms, and benefit from the lessons learned from HTML forms.

Further background information on X Forms can be found at http://www.w3.org/MarkUp/Formes.

1.2 Reading the Specification

This specification has been written with various types of readers in mind—in particular XForms authors and
XForms implementors. We hope the specification will provide authors with the tools they need to write efficient,
attractive and accessible documents without overexposing them to the XForms implementation details.
Implementors, however, should find al they need to build conforming XForms Processors. The specification begins
with a general presentation of XForms before specifying the technical details of the various X Forms components.

The specification has been written with various modes of presentation in mind. In case of a discrepancy, the online
electronic version is considered the authoritative version of the document.

This document uses the terms may, must, and should in accord with RFC 2119.

1.3 How the Specification is Organized

The specification is organized into the following chapters:
&R%&?B%&&P&%o XForms. The introduction outlines the design principles and includes a brief tutorial on XForms.

QE%‘PFﬁESr%f%P&]‘d% manual. The bulk of the reference manual consists of the specification of XForms. This reference
defines X Forms and how X Forms Processors must interpret the various components in order to claim conformance.

ﬁBB@HgBﬁ@ contain a normative description of XForms described in XML Schema, information on references, and
other useful information.

1.4 Documentation Conventions

Throughout this document, the foll owing namespace prefixes and corresponding namespace identifiers are used:

xforms: The XForms namespace 3.1 The XFor ms Namespace

html: The XHTML namespace [XHTML 1.0]

xsd: The XML Schema namespace [XML Schema part 1]

xsi: The XML Schema for instances namespace [XML Schema part 1]
xlink: The XLink namespace [XLink]

ev: The XML Events namespace [XML Events]

my: Any user defined namespace

Thisisonly a convention; any namespace prefix may be used in practice.

http://www.w3.org/MarkUp/Forms/

The following typographical conventions are used to present technical material in this document.

Official terms are defined in the following manner: [Definition: Y ou can find most termsin chapter 12 Glossary Of
Terms]. Linksto terms may be specialy highlighted where necessary.

The XML representations of various elements within X Forms are presented as follows: Listed are the element name,
names of all attributes, allowed values of attributes appearing after a "=" character, default values of attributes
appearing after a ":" character, and allowed content. One or more headings below the listing provide additional
explanatory information.

Example: XML Syntax Representation <exanpl e>

<exanpl e

count = xsd:integer

size = (small | medium| large) : nedium
>

<!-- Content: (allowed-content) -->

</ exanpl e>
count - description of this attribute
size - description of this attribute

Certain common attributes 3.2 Horizontally Applicable Markup are not shown in the syntax representations
except when special attention needs to be called to their presence.

Examples are set off typographically:

Example: Example item

Exanple Item

References to external documents appear as follows: [Sample Reference] with links to the references section of this
document.

Sample Reference
Reference - linked to from above.

The following typesetting convention is used for non-normative commentary:
Note:
A gentle explanation or admonition to readers.

I ssue (issue-id):
I ssue-Name

A specific issue to which input from readersis requested, not intended for final publication.

For diff-marked formatted text, note that newly added text appears like this, changed text appears like this, and
deleted text appears like this.

2 Introduction to XForms

This chapter provides an easily approachable description of XForms. Not every feature of XForms is covered here.
For a complete and normative description of XForms, refer to the remainder of this document. The following
subsections develop a complete example of an XForms application that is hosted in an XHTML document. The
complete exampleisfound in E.1 XFormsIn XHTML.

2.1 Separating Purpose From Presentation

A typical form starts off with a purpose, e.g., data collection. This purpose is realized by creating an interactive
presentation that allows the user to provide the requisite information. The resulting data is the result of completing
the form.

HTML forms failed to separate the purpose of a form from its presentation; additionally, they only offered a
restricted representation for data captured through the form. Here is a summary of the primary benefits of using
XForms:

%8%%8@&61 is strongly typed and can be checked using off-the-shelf tools. Type validation rules help client-side
validation, and such validation code can be automatically generated.

?ﬁi?%ﬁé@‘&%ﬁ&&%n and ensures that updating the validation rules as a result of a change in the underlying
business logic does not require re-authoring validation constraints within the X Forms application.

%F?&%ﬁ&emé W%ﬂﬁbr go beyond the basic set of constraints available from the back-end. Providing such
additional constraints as part of the XForms Model enhances the overall usability of the resulting web application.

%(Né‘owgf@ﬂ@ need for custom server-side logic to marshal the submitted data to the application back-end. The
received XML instance document can be directly validated and processed by the application back-end.

[J”éﬁﬁaé% W %Bt\‘%? instance data ensures that the submitted data is internationalization ready.

§Wm%%ent and presentation. User interface controls encapsulate al relevant metadata such as labels,
thereby enhancing accessibility of the application when using different modalities. XForms user interface controls
are generic and suited for device-independence.

W’Hé%%q%er%fﬁ%’%r the user interface controls, and the consequent intent-based authoring of the user interface
makes it possible to re-target the user interaction to different devices.

B?@ﬂﬁ%%h%sdedaraﬂve event handlers such as set Focus, nessage, and set Val ue that cover
common use cases, the majority of XForms documents can be statically analyzed; contrast this with the present
practice of using imperative scripts for event handlers.

2.2 Current Approach: HTML

Consider a simple electronic commerce form authored in HTML.:
Example: HTML Form

<htnm >
<head>
<title>eComrerce Fornx/title>
</ head>
<body>
<form action="http://exanpl e.conf subnit" nethod="post">
<tabl e summary="Paynment nethod sel ector">
<tr>
<t d><p>Sel ect Paynent Method: </ p></td>
<t d><| abel ><i nput type="radi 0" nane="as" val ue="cash"/>Cash</| abel >
<l abel ><i nput type="radi 0" nane="as" value="credit"/>Credit</I|abel ></td>
</tr>
<tr>
<td><l abel for="cc">Credit Card Number:</I| abel ></td>
<td><i nput type="text" name="cc" id="cc"/></td>
</tr>
<tr>

<t d><| abel for="exp">Expiration Date:</I|abel ></td>
<td><i nput type="text" nane="exp" id="exp"/></td>
</tr>
<tr>
<td col span="2"><i nput type="submt"/></td>
</tr>
</t abl e>

</ fornmp

</ body>
</htm >

A user agent might render this form as follows:

Select Payment Method: & Cash ¢ Credit
Credit Card Mumber:

Expiration Date:

Submit Clueny

This form makes no effort to separate purpose (data collection semantics) from presentation (the i nput form
controls), and offers no control over the pair serialization of the resulting data as name-value pairs. In contrast,
XForms greatly improve the expressive capabilities of electronic forms.

2.3 Transition to XForms

In the XForms approach, forms are comprised of a section that describes what the form does, called the XForms
Model, and another section that describes how the form is to be presented. XForms 1.0 defines the XForms User
Interface, which is a device-independent, platform-neutral set of form controls suitable for general-purpose use. The
user interface is bound to the XForms model via the XForms binding mechanism; This flexible architecture allows
others to attach user interfaces to an XForms Model asillustrated here:

Presentation Options

XForms
Model

Proprietary
X User
 Interfaces

The simplest case involves authoring the new XForms form controls, leaving out the other sections of the form. To
convert the previous form into XForms thisway, anodel element is needed in the head section of the document:

<xf or ms: nodel >
<xforms:submitinfo action="http://exanples.com subnmit" id="subnit"/>
</ xf or ms: nodel >

With these changes to the containing document, the previous example could be rewritten like this (note that we have
intentionally defaulted the X Forms namespace prefix in this example):

<sel ect One ref="as">
<capti on>Sel ect Payment Met hod</caption>
<choi ces>
<itenp
<capt i on>Cash</ capti on>
<val ue>cash</ val ue>
<litemp
<itenp
<capti on>Credi t </ capti on>
<val ue>credit </ val ue>
<litemp

</ choi ces>
</ sel ect One>

<i nput ref="cc">
<caption>Credit Card Nunber</caption>
</i nput >

<i nput ref="exp">
<capti on>Expi rati on Date</caption>
</i nput >

<submit submtlnfo="submt">
<capti on>Subni t </ capti on>
</ submit>

Notice the following features of this design:

» The user interface is not hard-coded to use radio buttons. Different devices (such as a voice browser) can render
the concept of "selectOne" as appropriate.

» Form controls always have captions directly associated with them, as child elements—this is a key feature
designed to enhance accessibility.

» Thereisno need for an enclosing f or melement, asin HTML. See (See 2.6 Multiple Forms per Document for
details on how to author multiple forms per document)

e Markup for specifying form controls has been simplified
» Datagets submitted as XML.

With these changes, the XForms Processor will be able to directly submit XML instance data. The XML is
constructed by creating a root element with child elements reflecting the names specified in each form control via
attribute r ef . In this example, the submitted data would look like this:

<i nst anceDat a>
<as>Credit</as>
<cc>1235467789012345</ cc>
<exp>2001- 08</ exp>

</i nst anceDat a>

2.4 Providing XML Instance Data

XForms processing keeps track of the state of the partially filled form through instance data. Initial values for the
instance may be provided via element i nst ance. Element i nst ance holds a skeleton XML document that gets
updated as the user fills out the form. Element i nst ance gives the author full control on the structure of the
submitted XML data, including namespace information. When the form is submitted, the instance data is serialized
as an XML document. The initial instance datais defined in the i nst ance element inside the nodel element, as
follows:

<xf or ms: nodel >
<xforns:instance>
<payn?nt as="credit" xm ns="http://conmrerce. exanpl e. com paynment ">
<CcC/ >
<exp/ >
</ paynent >
</ xforns:instance>
<xfornms:submtinfo action="http://exanple.conm subnit" method="post"/>
</ xf or ms: nodel >

This design has features worth calling out:

e Thereis complete flexibility in the structure of the XML. Notice that XML namespaces are now used, and that a

wrapper element of the author's choosing contains the instance data.

» Empty elements cc and exp serve as place-holders in the XML structure, and will be filled in with form data
provided by the user.

e Aninitial value ("credi t") for the form control is provided through the instance data, in this case an attribute
as. Inthe submitted XML, thisinitial value will be replaced by the user input.

To connect this instance data with form controls, ther ef attributes on the form controls need to point to the proper
part of the instance data, using binding expressions.

Example: Binding Expression

xm ns: ny="http://conmerce. exanpl e. com paynment". ..
<xformns: sel ect One ref="ny: paynment/ @s" >

<xf or ms: i nput ref="mny: paynent/my:cc">

<xf orns: i nput ref="ny: paynent/ nmy: exp">

Binding expressions are based on XPath [XPath 1.0], including the use of the @character to refer to attributes, as
seen here.

2.5 Constraining Values

XForms allows data to be checked for validity as the form is being filled. Referring to the earlier HTML formin 2.2
Current Approach: HTML, there are severa desirable aspects that would only be possible to ensure through the
addition of unstructured script code:

e The credit card information form controls cc and exp are only relevant if the "credit" option is chosen in the as
form control.

» The credit card information form controls cc and exp should be required when the "credit" option is chosen in
theas form control.

e Theform control cc should accept digits only, and should have between 14 and 18 digits.
» Theform control exp should accept only valid month/date combinations.

By specifying an additional component, model item constraints, authors can include rich declarative validation
information in forms. Such information can be taken from XML Schemas as well as XForms-specific constraints,
such asr el evant . XForms constraints appear on bi nd elements, while Schema constraints are expressed in an
XML Schema fragment, either inline or external. For example:

... xmns:nmy="http://comerce. exanpl e. conl paynent". ..
<xforns: bind ref="ny: paynment/my: cc"
rel evant="../ny: paynent/ @s = 'credit
requi red="true"

type="ny:cc"/>

<xforms: bind ref="ny: paynment/ny: exp"
rel evant="../ny: paynment/ @s = 'credit
requi red="true"
t ype="xsd: gYear Mont h"/ >

<xfornms: schema>
<xsd: schema ...>

<xsd: si npl eType name="cc">
<xsd:restriction base="xsd:string">
<xsd: pattern val ue="\d{14, 18}"/>

</ xsd:restriction>
</ xsd: si npl eType>

</ xsd: schena>
</ xf or ms: schenn>

2.6 Multiple Forms per Document

XForms processing places no limits on the number of individual forms that can be placed in a single containing
document. When a single document contains multiple forms, each form needs a separate model element. The first
nodel element may omit auniquei d attribute (as have all the examples above), but subsequent nodel elements
requireani d so that they can be referenced from elsewhere in the containing document.

In addition, form controls need to specify the rodel element contains the instance data to which they bind. Thisis
accomplished through anodel attribute alongside ther ef attribute. The default for the nrodel attribute is the first
nodel element in document order.

The next example adds an opinion poll to our electronic commerce form.

<xf or ns: nodel >
<xforns:instance>
... paynent instance data...
</ xforms:instance>
<xforms:submitinfo action="http://exanple.com subnit" nethod="post"/>
</ xf or ms: nodel >

<xforms: nodel id="poll">
<xforms:submtinfo .../>
</ xf or ms: nodel >

Additionally, the following markup would appear in the body section of the document:

<xforms: sel ect One ref="pol | Opti on" nodel ="pol | ">
<xforms: capti on>How useful is this page to you?</xforms:capti on>
<xf orms: choi ces>
<xforms:itenp
<xforms: capti on>Not at all hel pful </xfornms: caption>
<xf or ns: val ue>0</ xf or ns: val ue>
</xforms:itenp
<xfornms:itenp
<xforns: capti on>Barely hel pful </ xforns: capti on>
<xforms: val ue>1</ xf or ms: val ue>
</xforms:itenp
<xforns:itenp
<xf orms: capti on>Somewhat hel pf ul </ xf orns: capti on>
<xf or ns: val ue>2</ xf or ns: val ue>
</xforms:itenmp
<xforms:itenp
<xforms: capti on>Very hel pful </ xforns: capti on>
<xf or ms: val ue>3</ xf or ns: val ue>
</xforms:itenp
</ xf orms: choi ces>
</ xforms: sel ect One>

<xforns:submt submtlnfo="poll">
<xf orns: capti on>Submi t </ xf orns: capti on>
</ xforms: subm t >

The main difference here isthe use of nodel =" pol | ", which identifies the instance.

Note that compl ete examples can be found in E Complete XFor ms Examples

3 Document Structure

The XForms specification is an application of XML [XML 1.0] and has been designed for use within other XML
vocabularies—in particular within XHTML [XHTML 1.0]. This chapter discusses the structure of XForms that
allow this specification to be used with other document types.

3.1 The XForms Namespace

The XForms namespace has the URI: ht t p: / / www. w3. or g/ 2002/ 01/ xf or ns. Any future Working Drafts
are expected to use a different identifier, though afinal identifier will be allocated before XForms becomes a W3C
Recommendation.

XForms Processors must use the XML namespaces mechanism [XML Names] to recognize elements and attributes
from this namespace.

3.2 Horizontally Applicable Markup

Every element defined in this specification declares attribute i d of type xsd: | D—see the schema for
XForms—this allows these elements to be referenced via attributes of typexsd: i dr ef .

Foreign-namespaced attributes are allowed on any XForms element. The XForms Processor must ignore any
foreign-namespaced elements or attributes that are unrecognized.

Note that except where specifically alowed by the Schema for XForms, foreign-namespaced elements are not
allowed as content of elements in the X Forms namespace.

3.3 Model

This section describes XForms element nodel used as a container for XForms elements defining the XForms
model. The containing document may contain one or more nodel elements. Element nodel definesthe underlying
model to which the XForms document binds user interaction. Hence, nodel elements occur before the user
interaction markup. The content of element nodel istypicaly not rendered. Asan example, nodel elements occur
within element ht m : head of an XHTML document, whereas XForms user interface markup appears within
element ht m : body.

Example: XML Representation: <nodel >

<nodel

ext ensi onFunctions = |ist of QNames
>

<l-- Content: instance?, schema?, (privacy|submitlnfo|bind|action|extension)* -->
</ model >

extensionFunctions - Optional list of X Path extension functions used by this XForms Model. It is an error to use
an undeclared extension function.

Element nodel can contain the following elements.
H&ﬁ?&eskel eton instance document and holds initialization data if any—see 3.4 instance.

B‘é?ﬁ‘iggschemafor the instance—see 3.5 schema

BNt details—see 3.6 submitinfo
E'Qq{&% bi nd that establish one or more XForms bindings to define model item constraints—see 6 Constraints.
Egt\éﬁﬁ’éhes P3P properties—see 3.7 privacy

é\?grﬁnhandlers—see 10.16 action. This allows the author to handle events that arrive at node nodel —see the
processing model 4 Processing M odel.

E§[8H§ B8R elementsiif any—see 8.12.4.5 extension
Example: Model

<nodel xm ns="http://ww. w3. org/ 2002/ 01/ xf or ms" i d="Person">
<i nstance xlink: href="http://exanple.conf cgi-bin/get-instance" />
<schema xlink: href="Schenma- Questi onnaire. xsd" />

</ rrbblél >
3.4 instance

Element i nst ance contains a skeleton instance document that provides initial instance data. The instance data
may be defined inline or obtained from an external URI.

Example: XML Representation: <i nst ance>

<i nstance xlink:href = xsd:anyURl >
<l-- Content: (##any) -->
</instance>
xlink:href - Optional link to externally defined instance data

The content of thei nst ance element is arbitrary XML in any hamespace. other than the X Forms namespace. The
content of this element is treated as opaque data. Authors must ensure that proper namespace declarations are used
for content within thei nst ance element.

3.5 schema

Element schena contains the schema defining the instance. The schema may be defined inline or obtained from an
externa URI.

Example: XML Representation: <schema>

<schema xlink: href = xsd:anyURl >

<l-- Content: ##other (though typically <xsd:schema>) -->
</ schema>
xlink:href - Optional link to an externally defined schema.

3.6 submitinfo

Element subni t | nf o encodes how, where and what to submit.

Example: XML Representation: <subni t | nf o>

<subm tlnfo
(single node binding attributes)
action = xsd: anyURI
nmedi aTypeExt ensi on = "none" | qgnane-but-not-ncname : "none"
method = "post" | "get" | gname-but-not-ncnane : "post”
versi on = xsd: NMTCKEN

i ndent = xsd: bool ean

encodi ng = xsd:string

nmedi aType = xsd:string

om t XM_Decl arati on = xsd: bool ean
st andal one = xsd: bool ean

CDATASect i onEl enents = |ist of xsd: QNane

replace = "all" | "instance" | "none" | gname-but-not-ncname : "all"”
>

<I-- Content: XForms Actions -->

</ subm t | nf o>
single node binding attributes - optional selector enabling submission of a portion of the instance data
action - Required destination for submitting instance data.
mediaTypeExtension - Optional information describing the serialization format. This is in addition to the
mediaType.
method - Optional indicator as to the protocol to be used to transmit the serialized instance data.

version - correspondsto thever si on attribute of xsl : out put
indent - correspondsto thei ndent attribute of xsl : out put
encoding - correspondsto the encodi ng attribute of xsl : out put
mediaType - corresponds to the medi a- t ype attribute of xsl : out put
omitXML Declaration - correspondsto theomi t - xml - decl ar at i on attribute of xsl : out put
standalone - corresponds to the st andal one attribute of xsl : out put
CDATASectionElements - correspondsto the cdat a- sect i on- el enent s attribute of xsl : out put
replace - specifier for how the information returned after submit should be applied.

Note:

Many of these attributes correspond to XSLT attributes [XSLT]. Note that the XSLT attributes doct ype- syst em
and doct ype- publ i ¢ are not supported in XForms processing.

Note:

Note also that attribute nedi aTypeExt ensi on is useful in cases where a media type aone is not sufficiently
precise. For instance, a SOAP envelope would not be adequately described simply by "text/xml", additional
information would be required.

3.7 privacy

Element pri vacy isused to associate a P3P [P3P 1.0] policy reference with a particular form.
Example: XML Representation: <pri vacy>

<privacy
xlink: href = xsd:anyURI
>

<l-- Content: (##enmpty) -->
</ privacy>
xlink:href - Optional link to an externally defined P3P policyref file (not an actual policy).

3.8 XForms and XLink

XForms uses XLink [XLink] for linking and for defining an explicit relationship between resources that may be
either local or remote. To this end, the XForms schema references the XLink namespace with sensible defaults.
Other than in the case of attribute x| i nk: href, form authors will not be required to explicitly write
XLink-specific elements or attributes.

All XLinksin XForms are simple links. For further details, see 3.8.1 XLink Conformance and Examples.

3.8.1 XLink Conformance and Examples

An XForms processor is not required to implement full XLink—correct behavior of the x| i nk: hr ef attribute (as
defined in this chapter) is sufficient. For example, an XForms Processor must accept and correctly process the
schemain both of the following:

Example: External schema constraints

<xf or ns: nodel >

<xforns:schema xlink: href="URIl-to-renpte-schenma. xsd" />
</ xf or ms: nodel >
Example: Inline schema constraints

<xf or ms: nodel >
<xf ornms: schema>
<xsd:schema ...>
<l-- Content: ... -->
</ xsd: schena>
</ xf or ms: schena>
</ xf or ms: nodel >

This second example is unusual in that the xforns:schema dement defaults an attribute
xl'i nk: type="si npl e" but lacksan x| i nk: hr ef attribute to make the link meaningful. In this situation, the
XForms Processor should switch from si npl e mode to none mode for the element lacking attribute
xI'i nk: hr ef . For compatibility with XLink, the second example should be explicitly authored as follows:

Example: Inline schema constraints, with explicit xI i nk: t ype

<xf orms: nodel >
<xforms: schema xlink:type="none">
<xsd: schema. .. >
<l-- Content: ... -->
</ xsd: schenma>
</ xf or ms: schenn>
</ xf or ms: nodel >

Notice the explicit override of the x| i nk: t ype attribute.

If both inline content and external reference is provided, a processor must use the external reference and ignore the
inline content.

4 Processing Model

This chapter defines the XForms processing model declaratively by enumerating the various states attained by an
XForms processor and the possible state transitions that exist in each of these states. The chapter enumerates the
pre-conditions and post-conditions that must be satisfied in each of these states. XForms Processors may be
implemented in any manner, so long as the end results are identical to that described in this chapter.

The XForms processing model consists of the following three phases:
* initialization

* Userinteraction

» Submission

Each of these phases is further subdivided as explained in detail in subsequent sections of this chapter. State
transitions in the processing model occur when specific events are received, and the event handler that processes the
event determines the new state.

4.1 Events Overview

XForms processing is defined in terms of events, event handlers, and event responses. XForms uses the events
system defined in [DOM2 Events], with a event Capture phase, arrival of the event at its Target, and finally the
event Bubbling Phase.

Events editorial whiteboard:

If the submit event targets submitinfo (which seems reasonable), we should allow XForms Actions as children of
<submitlnfo>. (Accepted)

Did we get rid of destruct? | couldn't find a reference either way. (No decision)

4.2 Initialization Events

This section defines the various stages of the initialization phase. The processing application begins initialization by
dispatching an event xf or ns: nodel Const r uct to each XForms Model in the containing document.

4.2.1 xforms:modelConstruct

Dispatched in response to: XForms Processor initialization.
Target: nodel

Bubbles: No

Cancelable: No

Context Info: None

Default processing for this event results in the following:

1. Schemaisloaded, if any.
2. An XPath data model is constructed from the instance data, according to the following rules:
1. From an external source

2. If thereis no reference to an external instance, from an inline instance
Note:

If neither of these are supplied, the instance is constructed from the user interface, during user interface
construction.

3. Following this, an xf or ns: nodel | ni ti al i ze event is dispatched to element nodel .
4.2.2 xforms:modellnitialize

Dispatched in response to: completion of xf or ns: nodel Const r uct processing.

Target: nodel

Bubbles: No

Cancelable: No
Context Info: None
Default processing for this event results in the following:

1. The instance data has been structurally validated against the Schema, if any. If structural validation fails, all
XForms processing for this containing document halts.

2. If applicable, P3P has been initialized. [P3P 1.0]
3. Theinstance data has been constructed.

4, Thexforns:initializeDone event is dispatched to the nodel element after initialization of that model
element is completed but before rendering of the Ul has started.

5. After all XForms Models are initialized, the host must dispatch an xforns: Ul I niti ali ze event to each
nodel element.

4.2.3 xforms:initializeDone

Dispatched in response to: xf or ns: nodel I ni ti al i ze processing.
Target: nodel

Bubbles: No

Cancelable: No

Context Info: None

Default processing for this event results in the following:

4.2.4 xforms:UlInitialize

Dispatched in response to: XForms Processor user interface initialization.
Target: nodel

Bubbles: No

Cancelable: No

Context Info: None

Default processing for this event results in the following:

The host processor traverses the containing document, and for each form control, dispatches a
xforms:formControl I nitialize event to the form control.

4.2 .5 xforms:formControlinitialize

Dispatched in response to: xforms:UlInitialize processing.

Target: nodel

Bubbles: No

Cancelable: No

Context Info: None

Default processing for this event results in the following:

If the referenced model doesn't have instance data, it is created by following the rules for default instance data
described below. In the absence of a model, instance data items are treated as having type xsd: st ri ng. As each
user interface control is processed, an instance data element node is created by using the binding expression from the

user interface control as the name. The resulting instance data may be multiply rooted, and is intended only as a
representation of a sequence of name-value pairs.

4.3 Interaction Events

4.3.1 DOM Mutation Events

Dispatched in response to: any change in the instance data.

Target: instance data node

Bubbles: Yes

Cancelable: No

Context Info: varies

In implementations that support the DOM, standard DOM mutation events should be dispatched to the changing

target nodes whenever the instance data changes. Note that script, using the method getlnstanceDocument() and a
tree-walk, isrequired to associate event handlers with the instance data.

4.3.2 xforms:next and xforms:previous

Dispatched in response to: user request to navigate to the next or previous form control.

Target: form control

Bubbles: Yes

Cancelable: Yes

Context Info: None

Default processing for these events results in the following: Navigation according to the default navigation order.
For example, on a keyboard interface, "tab" would typically generate an xf or ns: next event, while "shift+tab"
would generate an xf or ms: pr evi ous event.

Navigation is determined on a containing document-wide basis. The basic unit of navigation is the form control. The
<gr oup>, <r epeat >, and <swi t ch> structures also serve as navigation units, but instead of providing a single

navigation point, they create a local navigation context for child form controls (and possibly other substructures).
The navigation sequence is determined as follows:

1. Those navigation units that support navl ndex and assign a positive value to it are navigated first.

1. Outermost navigation units are navigated in increasing order of the navl ndex value. Values need not be
sequential nor must they begin with any particular value. Navigation units that have identical navl ndex
values are be navigated in document order.

2. Ancestor navigation units establish a local navigation sequence. All navigation units within a local sequence
are navigated, in increasing order of the navl ndex vaue, before any outside the local sequence are
navigated. Navigation units that have identical navl ndex values are navigated in document order.

2. Those form controls that do not supply navl ndex or supply a value of "0" are navigated next. These form
controls are navigated in document order.

3. Those form controls that are disabled, hidden, or not r el evant are assigned a relative order in the overall
seguence but do not participate as navigable controls.

4. The navigation sequence past the last form control (or before the first) is undefined. XForms Processors may
cycle back to the first/last control, remove focus from the form, or other possibilities.

4.3.3 xforms:focus and xforms:blur

Dispatched in response to: aform control gaining or losing focus through any means.
Target: form control

Bubbles: Yes

Cancelable: Yes

Context Info: None

Default processing for these events results in the following: None; notification events only.

4.3.4 xforms:activate

Dispatched in response to: the "default action request” for a form control, for instance pressing a button or hitting
enter.

Target: form control
Bubbles: Yes
Cancelable: Yes
Context Info: None

Default processing for this event results in the following: None; notification event only.

4.3.5 xforms:valueChanging
Dispatched in response to: an interactive change to an instance data node bound to a form control.
Target: form control

Bubbles: Yes

Cancelable: Yes
Context Info: None

Certain form controls allow interactive response without finalizing on a value. Examples of this include edit boxes
(users can type various characters before navigating away) and dider controls (users can be continuously adjusting
the value before releasing at a certain value). Interactive temporary values such as this are expressly allowed to be
"invalid", that is outside the permissible value space. This is because incomplete data may be present while the user
is entering transitional values.

Example: A partially entered credit card value of "3" is not valid because it doesn't (yet) have enough characters.
This is permitted temporarily, as long as the user remains on the form control. XForms Full Processors would
update/refresh on every character. XForms Basic Processors would typically only update/refresh on the final value.
Default processing for this event results in the following:

1. If the partial value meets all validity constraints, it is reflected in the instance data. If not, the instance data
remains as it was before processing this event.

2. Eventr ecal cul at e has been dispatched to element nodel .
3. BEvent r ef r esh has been dispatched to element nodel .

Implementations that choose to implement val ueChangi ng are expected optimize processing (for instance not
flashing the entire screen for each character entered, etc.).

Note:
XForms Basic processors are not required to generate or respond to these events.

4.3.6 xforms:valueChanged

Dispatched in response to: a change to an instance data node bound to a form control, when the user navigates away
from the form control.

Target: form control

Bubbles: Yes

Cancelable: Yes

Context Info: None

Default processing for this event results in the following:

1. The value from the form control is reflected in the instance data.
2. Eventreval i dat e has been dispatched to element nodel .
3. Eventr ecal cul at e has been dispatched to element nodel .
4. Eventr ef r esh has been dispatched to element nodel .

4.3.7 xforms:scrollFirst

Dispatched in response to: arepeat view is scrolled past the beginning of the repeat items.

Target: r epeat

Bubbles: Yes
Cancelable: Yes
Context Info: None

Default processing for this event resultsin the following: None; notification event only.

4.3.8 xforms:scrollLast

Dispatched in response to: arepeat view is scrolled past the end of the repeat items.
Target: r epeat

Bubbles: Yes

Cancelable: Yes

Context Info: None

Default processing for this event resultsin the following: None; notification event only.

4.3.9 xforms:insert and xforms:delete

Dispatched in response to: A event handler invoking an XForms Actioni nsert or del et e.
Target: i nst ance

Bubbles: Yes

Cancelable: Yes

Context Info: Path expression used for insert/del ete.

Default processing for these events resultsin the following: None; notification event only.

4.3.10 xforms:select and xforms:deselect

Dispatched in response to: aniteminasel ect One, sel ect Many, or swi t ch becoming selected or desel ected.
Target: form control or swi t ch

Bubbles: Yes

Cancelable: Yes

Context Info: None

Default processing for this event resultsin the following: None; notification event only.

4.3.11 xforms:help and xforms:hint

Dispatched in response to: a user request for help or hint information.

Target: form control
Bubbles: Yes
Cancelable: Yes
Context Info: None

Default processing for these events results in the following: None; notification event only. User agents may provide
default help or hint messages.

4.3.12 xforms:alert

Dispatched in response to: aform control failing validation.
Target: form control

Bubbles: Yes

Cancelable: Yes

Context Info: None

Default processing for this event results in the following: An error message displayed, informing the user of the
action needed to make the form control valid.

4.3.13 xforms:valid

Dispatched in response to: aform control becoming valid with respect to the bound instance data.
Target: form control

Bubbles: Yes

Cancelable: No

Context Info: None

Default processing for this event resultsin the following: None; notification event only.

4.3.14 xforms:invalid

Dispatched in response to: aform control becoming invalid with respect to the bound instance data.
Target: form control

Bubbles: Yes

Cancelable: No

Context Info: None

Default processing for this event results in the following:

e Evental ert isdispatched to the form control.
4.3.15 xforms:refresh

Dispatched in response to: arequest to update al form controls associated with a particular XForms Model.
Target: nodel

Bubbles: Yes

Cancelable: Yes

Context Info: None

Default processing for this event results in the following: The user interface will reflect the state of the model. This
means:

» All form controls show the current value corresponding to the bound instance data.
» All form controls show the validity state of the corresponding bound instance data.
» Any form control associated with amodel item property r el evant evaluating to f al se is disabled/hidden/etc.

4.3.16 xforms:revalidate

Dispatched in response to: a request to revalidate one or al form controls associated with a particular XForms
Model.

Target: nodel or aform control

Bubbles: Yes

Cancelable: Yes

Context Info: None

Default processing for this event results in the following:

Revalidation may occur targeted to a context form control. The default handling for this event must satisfy the
following conditions:

1. The bound instance data node is checked against any bound Schema Constraints. If any fail, the context form
control is considered invalid.

2. The bound instance data node is checked against any bound XForms Constraints. If any fail, the context form
control is considered invalid.

3. If the context form contral is invalid, the XForms Processor must dispatch event i nval i d to the context form
control. Otherwise, event val i d must be dispatched to the form control.

When element nodel istargeted by this event, the above is applied to every form control in document order.

4.3.17 xforms:recalculate

Dispatched in response to: arequest to recalculate all calculations associated with a particular XForms Model.

Target: nodel

Bubbles: Yes

Cancelable: Yes

Context Info: None

Default processing for this event results in the following:

An XPath expression is bound either to the value or to a model item property (e.g., r equi r ed, r el evant) of one
or more instance nodes. The combination of an XPath expression with a single instance node's value or model item
property is considered as a single computational unit, acompute, for the purposes of recalculation.

When it is time to recalculate a compute, the XPath expression is evaluated in the context of the instance node
whose value or model item property is associated with the compute. The XPath expression may reference or refer
to another instance node, in which case the value of the instance node is referenced. Each referenced instance node
has as dependents those computes which directly refer to the instance node. Self-references are explicitly ignored,
i.e., If an expression associated with a compute refers to the instance node associated with the compute, then the
instance node does not take itself as a dependent. A compute is computationally dependent on an instance node
(whose value may or may not be computed) if there is a path of dependents leading from the instance node through
zero or more other instance nodes to the compute. A compute is part of a circular dependency if it is
computationally dependent on itself.

When a recalculation event begins, there will be a list L of one or more instance nodes whose values have been
changed, e.g., by user input being propagated to the instance.

1. An XForms processor must not recalculate computes that are not computationally dependent on one or more of
theelementsin L.

2. An XForms processor must perform a single recalculation of each compute that is computationally dependent on
one or more of the elementsin L.

3. An XForms processor must recal culate a compute C after recalculating all computes of instance nodes on which
C is computationally dependent. (Equivaently, an XForms processor must recalculate a compute C before
recalculating any compute that is computationally dependent on the instance node associated with C.)

4. Findly, if a compute is part of a circular dependency and also computationally dependent on an element in L,
then an XForms processor MUST report an exception.

C Recalculation Sequence Algorithm describes one possible method for achieving the desired recalculation
behavior.

4.3.18 xforms:reset

Dispatched in response to: a user request to reset the instance data.
Target: nodel

Bubbles: Yes

Cancelable: Yes

Context Info: None

Default processing for this event results in the following:

1. All of the instance data is selected for resetting.

2. New instance data for the selected instance data is prepared, based on the i nst ance element associated with
the current nodel element, according to the rules for initialization above.

3. The selected instance data is replaced with the new instance data.
4.4 XForms Submit

Form filling experience ends with submitting the form, or perhaps starting over. The XForms processing for these
events are covered here. The following sections describe how the instance data is prepared for submission.

4.4.1 xforms:submit

Dispatched in response to: a user request to submit the instance data.

Target: submi t 1 nfo

Bubbles: Yes

Cancelable: Yes

Context Info: None

Default processing for this event results in the following:

1. A node from the instance data is selected, based on the attribute r ef on element submi t | nf 0. This node and
all child nodes, are considered for the remainder of the submit process.

2. All sdlected instance datais revalidated. Any invalid instance data stops submit processing.

3. Selected instance data is serialized according to one of the processes defined below, as indicated by element
submi t I nf o attributes medi aType and nedi aTypeExt ensi on. Nodes that have an associated relevant
constraints that eval uates to false are not serialized.

4. Instance data is delivered over the network using the network protocol indicated by element submi t 1 nfo
attribute met hod.
Note:

The HTTP "get" protocol is deprecated for use in form submission. Form authors should use "post" for greater
compatibility.

5. The response returned from the submission is applied as follows: if element subni t | nf o attribute r epl ace
has the value of "al | ", the entire containing document is replaced. If the attribute value is "i nst ance”, the
response is parsed as XML and the internal instance data is replaced with the result, using the same processing as
remote instance data retrieved through xI i nk: href , and the xforns:initi al i ze event is dispatched to
element nodel . Behaviors of other possible values for attribute r epl ace are not defined in this specification.

Under no circumstances may more than a single concurrent submit process be under way for a particular XForms
Model.

4.4.2 application/x-www-form-urlencoded

This format is selected by the string appl i cati on/ x- wwf or m url encoded in element submi tlnfo
attribute mredi aType.

Note:

This serialization format is deprecated, and will be removed in a future version of the XForms specification. For

greater compatibility with XML and non-western characters, form authors should choose a different serialization
format.

This format is intended to facilitate the integration of XForms into HTML forms processing environments, and
represents an extension of the [XHTML 1.0] form content type of the same name with extensions to expresses the
hierarchical nature of instance data.

This format is not suitable for the persistence of binary content. Therefore, it is recommended that XForms capable
of containing binary content use either the multipart/form-data (4.4.3 multipart/form-data) or text/xml (4.4.4
text/xml) formats.

I ssue (issue-urlencoding-mods):
M odificationsto urlencoding process

The urlencoding technique given here does not exactly match how legacy implementations produce urlencoded data.
(In particular, we are adding contextual information with slashes and multiple location-steps) Will this approach
interfere with legacy implementations?

I ssue (issue-utf8-encoding):

Under discussion is the intent to have the data be UTF8 encoded; however, this is dependent upon IETF

developments. Would UTF8 meet the needs of the forms community?

Instance data is urlencoded with the following rules:

1. Each element node is visited in document order. If the element contains only a single node, it is selected for
inclusion. Note that attribute information is not preserved.

2. Elements selected for inclusion are encoded as "EltName=value;", where "=" and ";" are literal characters,
"EltName" represents the element local name, and "value" represents the contents of the text node. Note that
contextual path information is not preserved, nor are namespace prefixes, and multiple elements might have the
same name.

3. All such encodings are concatenated, maintaining document order. The resulting string is urlencoded, as in
HTML processing.

Example:

Example: application/x-www-form-urlencoded
Fi r st Nane=Rol and;

This format consists of simple name-value pairs.

<PersonNane title="M">
<Fi r st Nane>Rol and</ Fi r st Nane>
</ Per sonNanme>

Here is the instance data for the above example. Note that very little of the data is preserved. Authors desiring
greater dataintegrity should select a different serialization format.

4.4.3 multipart/form-data

Thisformat is selected by the stringmul ti part/f or m dat ainelement subm t | nf o attribute nedi aType.

This format is intended to facilitate the integration of XForms into HTML forms processing environments, and
represents an extension of the [XHTML 1.0] form content type of the same name that expresses the hierarchica
nature of instance data. Unlike the application/x-www-form-urlencoded 4.4.2
application/x-www-for m-urlencoded) format, this format is suitable for the persistence of binary content.

This format follows the rules of all multipart MIME data streams for form data as outlined in [RFC 2388], with the
"name" of each part being the canonical binding expression that references the selected instance data node.

Example:

Example: multipart/form-data

Content-Type: multipart/formdata; boundary=AaB03x

- - AaB03x
Content-Di sposition: formdata; name="/PersonNane/ @itle"

M
- - AaB03x
Content-Di sposition: formdata; nane="/PersonNane/First Name"

Rol and
- - AaB03x

...Possibly nore data. ..

- - AaB03x-
Thisformat consists of sets of a canonical binding expression paired with avalue.

<PersonName title="M">
<Fi r st Nanme>Rol and</ Fi r st Nanme>
</ Per sonNane>

Here isthe instance data for the above example.

4.4.4 text/xml

Thisformat is selected by the stringt ext / xml in element submi t | nf o attribute medi aType.

This format permits the expression of the instance data as XML that is straightforward to process with off-the-shelf
XML processing tools. In addition, this format is suitable for the persistence of binary content.

The steps for building this persistence format is as follows:
1. An XML document is produced following the rules of the XML output method defined in XPath [XSLT] section

16 and 16.1, using the values supplied as attributes of the submi t | nf 0 element.

2. If the selected content of the instance data corresponds to a multiply-rooted data structure (such as a general
parsed entity), an the above serialization takes place, after which the serialized instance data is inserted as child
elements of the unqualified element i nst anceDat a.

4.4.4.1 Binary Content

Instance data nodes with values of the types xsd:base64Binary and xsd:hexBinary are specifically allowed, and are
included in the serialized data according to the rules defined in [XML Schema part 2]
| ssue (issue-instance-metadata):

Where a value within the instance data represents binary content, can we store meta-information with an
xf or m medi aType attribute reflecting the appropriate content type (e.g., "image/jpg")?

4.5 Error Indications

4.5.1 xforms:schemaConstraintsError

Dispatched in response to: instance data becoming schema-invalid.
Target: nodel

Bubbles: Yes

Cancelable: No

Context Info: None

Default processing for this event results in the following: None; notification event only. Default error handling may
be used.

4.5.2 xforms:traversalError

Dispatched in response to: afailurein link traversal of an xlink:href attribute value.
Target: nodel

Bubbles: Yes

Cancelable: No

Context Info: The URI that failed to load.

Default processing for this event results in the following: None; notification event only. Default error handling may
be used.

4.5.3 xforms:invalidDatatypeError

Dispatched in response to: an invalid parameter passed to an X Forms function.
Target: nodel

Bubbles: Yes

Cancelable: No

Context Info: None

Default processing for this event results in the following: None; notification event only. Default error handling may
be used.

5 Datatypes

This chapter defines the datatypes used in defining an X Forms model.

5.1 XML Schema Built-in Datatypes

XForms includes all XML Schema datatypes. Concepts value space, lexical space and constraining facets are as
specified in [XML Schema part 2]. XML Schema features used in XForms are divided into two modules, called
Basic and Full. Base types included in module basic are marked with an asterisk *. Datatypes derived by restriction
and derived by list from these base types are also included in the basic module.

Built-in primitive types:

duration *
dateTime *
time*

date *
gYearMonth *
gYear *
gMonthDay *
gDay *
gMonth *
string *
boolean *
base64Binary *
hexBinary
float

decimal *
double
anyURI *
QName
NOTATION

Built-in derived types:

normalizedString
token

language

Name

NCName

ID

IDREF

IDREFS
ENTITY
ENTITIES
NMTOKEN
NMTOKENS
integer *
nonPositivel nteger *
negativel nteger *
long *

int *

short *

byte *
nonNegativel nteger *
unsignedLong *
unsignedint *
unsignedshort *
unsignedByte *
positivel nteger *

5.2 XForms Datatypes

The Schema for XForms derives the following types to facilitate defining nodel in XForms. These types are
included in XForms Basic.

5.2.1 xforms:listltem

This datatype serves as a base for the listitem datatype. The value space for listitem permits one or more characters
valid for xsd:string, except whitespace characters.

5.2.2 xforms:listltems

XForms includes form controls that produce simpleType list content. This is facilitated by defining a
derived-by-1i st datatype. The vaue space for listitemsis defined by list-derivation from listltem.

Note:
In most cases, it is better to use markup to distinguish itemsin alist. See 8.11.3 itemset.

6 Constraints

This chapter defines constraints that can be bound to form data. The combination of these constraints with an
instance data node is called a model item. Taken together, these constraints are called model item constraints. The
term Schema constraint refers only to XML Schema datatype constraints, while the term XForms constraint refers to
XForms-specific constraints defined in the following section.

6.1 XForms Constraints

XForms constraints are defined via attributes of element bi nd. There are two kinds of constraintsin XForms 1.0 as
defined below.

» Fixed constraints are static values that the XForms Processor evaluates only once. Such constraints typically
encode type information.

» Computed expressions are XPath expressions that provide a value to the XForms Processor. Such values are
recomputed at certain times as specified by the XForms Processing Model (see 4 Processing Model). These
expressions encode dynamic constraints such as the dependency among various data items. Computed
expressions are not restricted to examining the value of the instance data node to which they apply. XPath
expressions provide the means to traverse the instance data; more complex computations may be encoded as
call-outs to external scripts.

The following constraints are available for al model items. For each constraint, the following information is
provided:

Description

Computed Expression (yes or no)

Appliesto children (inherited by instance data child elements and attributes)
Legal Vaues

Default Value

6.1.1 type

Description: associates a Schema datatype.

Computed Expression: No.

Appliesto children: No.

Legal Values: Any xsd: QNane representing an in-scope datatype.
Default Value: xsd: stri ng.

The effect of this constraint is the same as placing attribute xsi : t ype on the instance data.

6.1.2 readOnly

Description: describes whether the value is restricted from changing. The ability of form controls to have focus and
appear in the navigation order is unaffected by this constraint.

Computed Expression: Yes.

Appliesto children: Yes.

Legal Vaues: Any expression that is convertible to bool ean.
Default Value: f al se.

When evaluating to t r ue, this constraint indicates that the XForms Processor should not allow any changes to the
bound instance data node.

In addition to restricting value changes, the r eadOnl y constraint provides a hint to the XForms User Interface.

Form controls bound to instance data with the r eadOnl y constraint should indicate that entering or changing the
valueis not allowed. This specification does not define any effect on visibility, focus, or navigation order.

6.1.3 required

Description: describes whether a value is required before the instance data is submitted.

Computed Expression: Yes.

Appliesto children: Yes.

Legal Vaues: Any expression that is convertible to bool ean.

Default Value: f al se.

A form may require certain values, and this requirement may be dynamic. When evaluating tot r ue, this constraint
indicates that a non-empty instance data node is required before a submission of instance data can occur. Non-empty

is defined as:

1. If the bound instance data node is an el ement, the element must not havethe xsi : ni | attribute settot r ue.

2. The value of the bound instance data node must be convertible to an XPath st r i ng with a length greater than
zero.

Except as noted below, the r equi r ed constraint does not provide a hint to the XForms User Interface regarding
visibility, focus, or navigation order. XForms authors are strongly encouraged to make sure that form controls that

accept r equi r ed data are visible. An XForms Processor may provide an indication that a form control is required,
and may provide immediate feedback, including limiting navigation. Chapter 4 Processing Model contains details
on how the XForms Processor enforces required values.

6.1.4 relevant

Description: indicates whether the model item is currently relevant. Instance data nodes with r el evant =f al se
are not serialized for submission.

Computed Expression: Yes.

Appliesto children: Yes.

Legal Values: Any expression that is convertible to bool ean.

Default Value: t r ue.

Many forms have data entry fields that depend on other conditions. For example, a form might ask whether the
respondent owns a car. It is only appropriate to ask for further information about their car if they have indicated that
they own one.

Constraint r el evant provides hints to the XForms User Interface regarding visibility, focus, and navigation order.
In general, when t r ue, associated form controls should be made visible. When f al se, associated form controls
should be made unavailable, removed from the navigation order, and not allowed focus.

The following table shows the user interface interaction betweenr equi r ed andr el evant .

6.1.5 calculate

Description: supplies an expression used to calcul ate the value of the associated instance data node.

Computed Expression: Yes.

Appliesto children: No.

Legal Values: Any XPath expression

Default Value: none.

An XForms Model may include model items that are computed from other values. For example, the sum over line
items for quantity times unit price, or the amount of tax to be paid on an order. Such computed value can be

expressed as a computed expression using the values of other model items. The XForms Processing Model indicates
when and how the calculation is performed.

6.1.6 isValid

Description: specifies a predicate that needs to be satisfied for the associated instance data node to be considered
valid.

Computed Expression: Yes.
Appliesto children: No.

Legal Values: Any expression that is convertibleto bool ean.

Default Value: t r ue.

When evaluating to f al se, the associated model item is not valid; the converse is not necessarily true. Chapter 4
Processing M odel describes details such asimmediate validation versus validation upon submit.

The XForms User Interface may indicate the validity of aform control.

6.1.7 maxOccurs

Description: for repeating structures, indicates the maximum number of allowed child elements.
Computed Expression: No.

Appliesto children: No.

Lega Vaues: xsd: i nt eger or " unbounded".

Default Value: " unbounded” .

For model item elements that are repeated, this optiona constraint specifies a maximum number of allowed child
elements.

6.1.8 minOccurs

Description: for repeating structures, indicates the minimum number of allowed child elements.
Computed Expression: No.

Appliesto children: No.

Legal Values: xsd: i nt eger.

Default Value: 0.

For model item elements that are repeated, this optional constraint specifies a minimum number of allowed child
elements.

6.2 Schema Constraints

Chapter 5 Datatypes described how XForms uses the XML Schema datatype system to constrain the value space of
data values collected by an XForm. Such datatype constraints can be provided via an XML Schema. Alternatively,
this section lists various mechanisms for attaching type constraints to instance data. Attributes
xsi : schermalLocat i on and xsi : noNanespaceSchemalLocat i on are ignored for purposes for locating a
Schema. XForms Basic processors have restricted Schema processing requirements as defined in 11.1.1 XForms
Basic.

6.2.1 Atomic Datatype

The XForms Processing Model applies XML Schema facets as part of the validation process. At the simplest level,
it is necessary to associate a set of facets (through a Schema datatype) with a model item. This has the effect of
restricting the allowable values of the associated instance data node to valid representations of the lexical space of
the datatype.

The set of facets may be associated with a model item in one of the following ways (only the first that applies is
used, and if multiple type constraints apply to the same node, the first definition in document order is used).

1. An XML Schema associated with the instance data.

2. An XML Schemaxsi : t ype attribute in the instance data.

3. An XFormst ype constraint associated with the instance data node using X Forms binding.

4. If no type constraint is provided, the data instance node defaultsto t ype=xsd: st ri ng (default to string rule).
The following declares a datatype based on xsd: st r i ng with an additional constraining facet.

Example: Type Constraint Using Schema.

<xsd: si npl eType nanme="nonEnptyString">
<xsd:restriction base="xsd:string">
<xsd: m nLengt h val ue="1"/>
</ xsd:restriction>
</ xsd: si npl eType>

This new datatype would then be associated with one or more model items through one of the methods outlined
here.

Example: Attaching A Type Constraint

<ny:first-nane xsi:type="nonEnptyString"/>

This defineselement f i r st - nane to be of typenonEnpt ySt ri ng.
Example: Attaching Type Constraint Using XForms Binding

<i nst ance>
<ny:first-name />
</instance>
<bi nd type="nonEnptyString" ref="/ny:first-name"/>

Here, we have attached type information to element fi r st - nanme via element bi nd. This enables the XForms
author extend external Schemas that she does not have the ability to change.

6.3 Additional Schema Examples

The following non-normative sections illustrate mapping between Schema concepts and data structures commonly
used in form authoring.

6.3.1 Closed Enumeration

It is often necessary to restrict the allowable values of the associated instance data node to a closed list of
alternatives, e.g., when asking for a credit card type. Here is a schema fragment that declares a datatype that allows
enumerated values of an xsd: stri ng.

Example: Closed Enumeration

<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="MisterCard"/ >
<xsd: enuner ati on val ue="Donor"' sCl ub"/ >
<xsd: enuner ati on val ue="W | dExpr ess"/ >
<xsd: enuneration val ue="EntryPermt"/>
</xsd:restriction>
</ xsd: si npl eType>

6.3.2 Open Enumeration

A specia case of enumerated datatypes is the common form design pattern of a list with an ‘other, please specify'
choice. Thisis referred to as an open enumeration.

Declaring an open enumeration is possible through a combination of union and enumeration.
Example: Open Enumeration

<xsd: si npl eType>
<xsd: uni on menber Types="xsd: stri ng">
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enurer ati on val ue="MisterCard"/ >
<xsd: enurer ati on val ue="Donor"' sCl ub"/ >
<xsd: enurner ati on val ue="W | dExpress"/ >
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: uni on>
</ xsd: si npl eType>

6.3.3 Union

It may be desirable to allow an instance dataitem to be avalid lexical value of one among several datatypes. Unions
are defined in XML Schema.

The following defines a datatype that accepts either acr edi t Car dType or bonusPr ogr anilype.

Example: Union Of Types

<xsd: si npl eType>
<xsd: uni on menber Types="credit CardType bonusPrograniype"/ >
</ xsd: si npl eType>

6.3.4 Lists

Form controls such assel ect Many collect more than one value. This corresponds to Schemallist datatypes.

The following declares a list-derived datatype.
Example: List Datatype

<xsd: si npl eType name="1i st O Myl nt Type" >
<xsd:list itemlype="xsd:int"/>
</ xsd: si npl eType>

6.4 Binding

Binding is the glue that connects the separate pieces of X Forms—here, we use X Forms binding to associate instance
data with model item constraints.

Binding is specified via binding expressions, which select nodes from the instance data. Binding expressions are

based on XPath and are defined in chapter 7 XPath Expressions in XForms. This section describes how binding
expressions are used when defining the X Forms model.

6.4.1 bind

Element bi nd operates on a node-set selected from the instance data. Attributes on element bi nd encode XForms
constraints to be applied to each node in the node-set.

Example: XML Representation: <bi nd>

<bi nd ref = bi ndi ng-expression
<!-- nodel itemconstraints -->
type = xsd: QNane
readOnly = nodel -item constraint
required nodel -i tem constr ai nt
rel evant nodel -i t em constr ai nt
isvValid = nodel -item constraint
cal cul ate = nodel -item constr ai nt
maxQccurs = xsd: nonNegati vel nt eger or 'unbounded

m nQccur s xsd: nonNegat i vel nt eger
>

<l-- Content: (bind)* -->
</ bi nd>

ref - A binding expression that selects the set of nodes that thisbi nd operates on.
model item constraints Model item constraints as defined in 6.1 XFor ms Constraints.

Each bind element selects a node-set from the instance data, and applies the specified constraints. When additional
nodes are added through action i nser t , the newly added nodes are included in any node-sets matched by binding
expressions—see actioni nsert in 10.11 insert.

6.4.2 Rules For Binding Expressions

Not every possible XPath expression is acceptable as a binding expression. The following rules are used to limit the
range of XPath expressions that can appear as valid binding expressions.

1. No dynamic predicates. Predicates are permitted, but such predicates must not depend on other form settings.
Here are afew examplesto illustrate this.
Example: Permissible Binding Expressions

permtted: elem
permtted: elenfl]
permtted: elenflast()]
permtted: elenf @d="zip"] if @d is not bound to a formcontrol
forbidden: elenf@ttr="xy"] if @ttr is bound to a formcontrol

2. No invocation of any function that returns a node-set. Function calls are permitted, but not any that return a
node-set.

3. No invocation of any function with side-effects. All functions defined in the XForms specification are
side-effect-free. Any extension functions should also be side-effect-free.

Upon detecting a binding expression that violates any of the above constraints, form processing terminates with a
fatal error.

6.4.3 Binding References

Binding references can be used to bind form controls to the underlying data instance as described in 8.12.2 Single
Node Binding Attributes and 8.12.3 Nodeset Binding Attributes. Different attribute names, r ef and nodeset
distinguish between a single node and a node-set respectively.

First node rule: When a single-node binding expression selects a node-set of size > 1, the first node in the node-set
isused. This has no effect on the individual nodes nor the set of nodes selected by any particular bi nd element.

Consider a document with the following X Forms declarations:
Example: First Node Rule

<xfornms: nodel id="orders">
<xforms:instance xm ns="">
<or der For n»
<shi pTo>
<firstNanme>John</first Nanme>
</ shi pTo>
</ or der For n»
</ xforms:instance>
<xforms: bind ref="/orderFornishipTo/firstNane" id="fn" />
</ xf or ms: nodel >

The following examples show three ways of binding user interface control xf or ms: i nput to instance element
first Name declared in the model shown above.

Example: Ul Binding Using Attribute r ef

<xforms:input ref="/orderFormn shipTo/firstName">...
Example: Ul Binding Using Attribute bi nd

<xforms:input bind="fn">. ..
Example: Specifies Model Containing The Instance Explicitly

<xforms:input nodel ="orders" ref="/orderForm shi pTo/firstNane">...

The XForms binding mechanism allows other XML vocabularies to bind user interface controls to an XForms
model using any of the techniques shown here. As an example, XForms binding attribute bi nd might be used
within legacy HTML user interface controls as shown below.

Example: XForms Binding In Legacy HTML User Interface Controls

<htm :input type="text" name="..." xformns:bind="fn"/>

7 XPath Expressions in XForms

XForms uses XPath to address instance data nodes in binding expressions, to express constraints, and to specify
calculations.

7.1 XPath Datatypes

XPath data types are used only in Binding expressions and computed expressions. XForms uses XPath datatypes
bool ean, stri ng, nunber and node-set. A future version of XForms is expected to use XPath 2.0, which
includes support for XML Schema datatypes.

7.2 Instance Data

For each nodel element, the XForms processor maintains the state in an internal structure called instance data that
conforms to the XPath Data Model [XPath 1.0]. Elements and attributes in the instance data may have namespace
information associated with them, as defined in the XPath Data Model. Unless otherwise specified, all instance data
elements and attributes are unqualified. In addition, XForms processors must provide DOM access to this instance
data viathe interface defined below.

interface X FormsM odel Element : org.w3c.dom.Element

The method getlnstanceDocument returns a DOM Document that corresponds to the instance data associated with

this XForms Model.
Return value: org.w3c.dom.Document
raises (DOM Exception); if thereis no model with the specified model-id.

If the instance data is multiply rooted, the returned document has unqualified element i nst anceDat a as the
docunent El enent , with the content of the XForms Model as children.

7.3 Evaluation Context

Within XForms, XPath expressions reference abstract instance data (using the "path" portion of XPath), instead of a
concrete XML document. This referenceis called a binding expression in this specification. Every XPath expression
requires an evaluation context. The following rules are used in determining evaluation context when evaluating
elements containing binding expressionsin XForms:

1. The context node for outermost binding elements is the XPath root (/). A " binding element” is any element
other than bi nd that is explicitly alowed to have a binding expression attribute. A binding element is
"outermost" when the node-set returned by the XPath expression ancest or : : * includes no binding element
nodes.

2. The context node for non-outermost binding elements is the first node of the binding expression of the
immediately enclosing element. An element is "immediately enclosing” when it is the first binding el ement node
in the node-set returned by the XPath expression ancest or : : *. Thisisaso referred to as "scoped resolution”.

3. The context node for the r ef attribute on bi nd is the XPath root. The context node for computed expressions
(occurring on element bi nd) is the first node of the node-set returned from the binding expression in the sibling
ref attribute.

4. The context size and position are both exactly 1.
5. No variable bindings are in place.

6. The available function library is defined below, plus any function names declared in attribute
ext ensi onFuncti ons on element nodel .

7. Any namespace declarations in scope for the attribute that defines the expression are applied to the expression.
Example: Binding Expression Context Nodes

<group ref="level 1/1 evel 2/1 evel 3">

<sel ectOne ref="elent ... />
<selectOne ref="@ttr" ... />
</ group>

In this example, the gr oup has a binding expression of | evel 1/1 evel 2/ 1 evel 3. According to the rules
above, this outermost element would have a context node of / , which is the root of the instance data, or the parent to
the el emelement. Both of the sel ect Ones then inherit a context node from their parent, the context node being
/1 evel 1/ 1 evel 2/ 1 evel 3. Based on this, the sel ect One binding expressions evaluate respectively to
/1 evel 1/l evel 2/ 1 evel 3/elem and /| evel 1/1evel 2/1 evel 3/ @ttr. Matching instance data
follows:

Example: Sample Instance

<l evel 1>
<| evel 2>
<level 3 attr="xyz">
<el empxyz</ el enp
</l evel 3>
</l evel 2>

</l evel 1>
7.4 XForms Core Function Library

The XForms Core Function Library includes the entire [XPath 1.0] Core Function Library, including operations on
node-sets, strings, numbers, and booleans.

This section defines a set of required functions for use within XForms.
7.4.1 Boolean Methods

7.4.1.1 boolean-from-string()
boolean boolean-from-string(st ri ng)

Function bool ean-from string returns t r ue if the required parameter stri ng is "true’, or f al se if
parameter stri ng is "fase". This is useful when referencing a Schema xsd: bool ean datatype in an XPath
expression. If the parameter string matches neither "true" nor "false", according to a case-insensitive comparison,
processing stops with afatal error.

7.4.1.2if()
string if(bool ean, string,string)

Function i f evaluates the first parameter as boolean, returning the second parameter when t r ue, otherwise the
third parameter.

7.4.2 Number Methods
Note:

The XPath number datatype and associated methods and operators use |EEE specified representations. XForms
Basic Processors are not required to use |EEE, and thus might yield slightly different results.

7.4.2.1 avg()
number avg(node- set)

Function avg returns the arithmetic average of the result of converting the string-values of each node in the
argument node-set to a number. The sum is computed with sun{() , and divided with di v by the value computed
with count ().

7.4.2.2 min()
number min(node- set)

Function mi n returns the minimum value of the result of converting the string-values of each node in argument
node- set to anumber. "Minimum" is determined with the < operator. If the parameter is an empty node set, the
return valueis NaN.

7.4.2.3 max()
number max(node- set)

Function max returns the maximum value of the result of converting the string-values of each node in argument
node- set to anumber. "Maximum" is determined with the < operator. If the parameter is an empty node set, the
return valueis NaN.

7.4.2.4 count-non-empty()
number count-non-empty(, node- set)

Function count - non-enpty returns the number of non-empty nodes in argument node- set. A node is
considered non-empty if it is convertible into a string with a greater-than zero length.

7.4.2.5 cursor()
number cursor(,string)

Function cur sor takes a string argument that isthe i dr ef of ar epeat and returns the current position of the
repeat cursor for the identified r epeat —see 9.3 repeat for details on r epeat and its associated repeat cursor. If
the specified argument does not identify ar epeat , thisfunction throws an error.

Example: cursor

<xformns: button>
<xforms: capti on>Add to Shoppi ng
Cart </ xforms: capti on> <xforns:insert
ev:event="ev:activate" position="after"
nodeset="itens/iten
at="cursor('cartu')"/>
</ xforms: button>

7.4.3 String Methods

7.4.3.1 property()
string property(,string)
Function pr oper t y returns the X Forms Property named by the string parameter.

The following properties are available for reading (but not modification).
Vglsigpon isdefined asthe string "1. 0" for XForms 1.0

E%HP%P?P&F\LJ;%’.GI evel stringsare defined in 11 Confor mance.
Example: property

<xforms:instance>
... <xforns:bind
ref ="i nf o/ xf or ns- ver si on"
cal cul ate="property('version')"/> ..
</ xforms:instance>

7.4.3.2 now()

string now()

The now function returns the current system date and time as a string value in the canonical Schema
xsd: dat eTi ne format. If time zone information is available, it isincluded (normalized to UTC).

7.4.4 Extension Functions

XForms documents may use additional XPath extension functions beyond those described here. The names of any
such extension functions must be declared in attribute ext ensi onFuncti ons on element nodel . Such
declarations are used by the XForms processor to check against available extension functions. XForms processors
perform this check at the time the document is loaded, and stop processing by signalling afatal error if the XForms

document declares an extension function for which the processor does not have an implementation.
Note:

Explicitly declaring extension functions enables XForms processors detect the use of unimplemented extension
functions at document load-time, rather than throwing a fatal error during user interaction. Failure by authors to
declare extension functions will result in an XForms processor potentially halting processing during user interaction
with afatal error.

8 Form Controls

XForms User Interface controls—form controls—are declared using markup elements, and their behavior refined
via markup attributes. This markup may be decorated with cl ass attributes that can be used in CSS stylesheets to
deliver a customized look and feel. XForms user interface controls are bound to the underlying instance data using
binding attributes as defined in the chapter 6 Constraints.

Form controls enable accessibility by taking a uniform approach to such features as captions, help text, tabbing and
keyboard shortcuts. Internationalization issues are addressed by following the same design principlesasin XHTML.
All form controls are suitable for styling using Aural CSS (ACSS) style properties.

Form controls encapsulate high-level semantics without sacrificing the ability to deliver real implementations. For
instance, form controls sel ect One and sel ect Many enable the user select one or more items from a set. These
form controls distinguish the functional aspects of the underlying control from the presentational aspects (through
cl ass attributes) and behavior (through XForms Action elements). This separation enables the expression of the
intent underlying a particular form control—see [AUI97] for a definition of such high-level user interaction
primitives.

Form controls when rendered display the underlying data values to which they are bound. While the data presented
to the user through a form control must directly correspond to the bound instance data, the display representation is
not required to exactly match the lexical value. For example, user agents should apply appropriate conventionsto the
display of dates, times, durations and numeric values including separator characters.

XForms user interface controls use common attributes and elements that are defined in (8.12 Common Markup).
Sections in this chapter define the various form controls by specifying the following:

Description

Examples

Data Binding Restrictions
Implementation Requirements
XML Representation

8.1 input

Description: This form control enables free-form data entry.

<i nput ref="order/shipTo/street" class="street Address">
<capti on>Street</capti on>
<hi nt >Pl ease enter the nunber and street nane</hint>
</i nput >

In the above, the cl ass attribute can be used by a stylesheet to specify the display size of the form control. Note
that the constraints on how much text can be input are obtained from the underlying XForms Model definition and
not from these display properties.

A graphical browser might render the above example as follows:

Street |

Data Binding Restrictions: Binds to any simpleContent (except xsd: base64Bi nary, xsd: hexBi nary or any
datatype derived from these).

Implementation Requirements: Must allow entry of alexical value for the bound datatype. Implementations should
provide the most convenient means possible for entry of datatypes and take into account localization and
internationalization issues such as representation of numbers. For example, an i nput bound to an instance data
node of type Dat e might provide a calendar control to enter dates; similarly, an input control bound to data instance
of typebool ean might be rendered as a ssmple checkbox.
Example: XML Representation: <i nput >
<i nput
(single node binding attributes)
(common attri butes)
i nput Mode = xsd: string
>
<l-- caption, (help|hint|alert|action|extension)* -->
</i nput >
(single node binding attributes) - Selection of instance data node, defined in 8.12.2 Single Node Binding
Attributes
common attributes defined in 8.12.1 Common Attributes
inputM ode - this form control accepts an input mode hint. D Input M odes
Note:

Notice that not binding any user interface to a piece of instance data results in an hidden form control in XForms;
consequently, there is no need to explicitly define input form controls with t ype="hi dden" asin HTML.

8.2 secret

Description: Thisform control is used for entering information that is considered sensitive, and thus not echoed to a
visua or aural display asit is being entered, e.g., password entry.

Example: Password Entry

<secret ref="/1ogin/password">
<capt i on>Passwor d</ capt i on>

<hi nt >Pl ease enter your password --it will not
be visible as you type. </ hint>
</ secret>

A graphical browser might render this form control as follows:

Flease enter your password —it
will not be visible as you type..

o e e ke e o e

Data Binding Restrictions: Identical toi nput .

Implementation Requirements: In general, implementations, including accessibility aids, must render a "*" or
similar character instead of the actual characters entered, and thus must not render the entered value of this form
control. Note that this provides only a casual level of security; truly sensitive information will require additional
security measures outside the scope of XForms.

Example: XML Representation <secr et >

<secret
(single node binding attri butes)
(common attri butes)
i nput Mode = xsd:string
>
<l-- caption, (help|hint|alert|action|extension)* -->
</ secret>
(single node binding attributes) - Selection of instance data node, defined in 8.12.2 Single Node Binding
Attributes
common attributes defined in 8.12.1 Common Attributes
inputM ode - this form control accepts an input mode hint. D Input M odes

8.3 textarea

Description: This form control enables free-form data entry and is intended for use in entering multiline content,
e.g., the body of an email message.

Example: Email Message Body

<t extarea ref="nessage/ body" cl ass="nessageBody" >
<capti on>Message Body</caption>
<hi nt>Enter the text of your nessage here</hint>
</ textarea>

In the above, the cl ass attribute can be used by a stylesheet to specify the display size of the form control. Note
that the constraints on how much text can be input are obtained from the underlying XForms Model definition and
not from these display properties.

A graphical browser might render the above example as follows:

Message Body:

Data Binding Restrictions: Bindsto xsd: st ri ng or any derived simpleContent.

Implementation Requirements: Must alow entry of alexical value for the bound datatype, including multiple lines
of text.

Example: XML Representation: <t ext ar ea>

<t ext area
(single node binding attri butes)
(common attri butes)
i nput Mode = xsd:string
>
<l-- caption, (help|hint|alert|action|extension)* -->
</t extarea>
(single node binding attributes) - Selection of instance data node, defined in 8.12.2 Single Node Binding
Attributes
common attributes defined in 8.12.1 Common Attributes
inputM ode - this form control accepts an input mode hint. D Input Modes

8.4 output

Description: This form control renders a value from the instance data, but provides no means for entering or
changing data. It is typically used to display values from the instance, and is treated as di spl ay: i nl i ne for
purposes of layout.

Example: Explanatory Message

| charged you -
<output ref="order/total Price"/>
and here is why:

A graphical browser might render an output form control as follows:

I charged you 100.0 - and here is why:
+ Hidden Shipping charges

-~ Fvnrirad Aicrcaninte
Data Binding Restrictions: Binds to any simpleContent.

Implementation Requirements: Must allow display of a lexical value for the bound datatype. Implementations
should provide the most convenient means possible for display of datatypes and take into account localization and
internationalization issues such as representation of numbers.

Example: XML Representation: <out put >

<out put
(single node binding attributes)
>

<l-- enpty content -->
</ out put >
(single node binding attributes) - Selection of instance data node, defined in 8.12.2 Single Node Binding
Attributes

8.5 upload

Description: This form control enables the common feature found on Web sites to upload a file from the local file

system, aswell as accepting input from various devices including microphones, pens, and digital cameras.

Example: Uploading An Image

<upl oad ref="mmil/attachl" nedi aType="i mage/*">

<capti on>Sel ect inmmage: </caption>

</ upl oad>

A graphical browser might render this form control asfollows:

| Select Imane:; j

% From Scanner ar Camera...

Scribble. .

Browse...

Data Binding Restrictions: This form control can only be bound to datatypes xsd: base64Bi nary or
xsd: hexBi nary, or types derived by restriction from these.

Implementation Requirements: For suitable mediaTypes:

Implementations with a file system should support file upload—selecting a specific file. The types of files
presented by default must reflect the mediaType specified in the XForms Model, for example defaulting to only
audio file typesin the file dialog when the mediaTypeis "audio/*". In XForms 1.0, there isa 1:1 binding between
a upload form control and one of the bi nary datatypes, athough that single file may be compound (e.g.
application/zip).

Implementations with specific pen/digitizer hardware should (and implementations with other pointing devices
may) support scribble—allowing in-place creation of pen-based data.

Implementations with specific audio recording capabilities should support record audio—in-place recording of
an audio clip.

Implementations with a digital camera/scanner interface or screen capture should support acquire
image—in-place upload of images from an attached device.

Implementations with video recording capability should provide arecord video option.
Implementations with 3d capabilities should provide a 3d interface option.

Implementations may provide proprietary implementations (for example, a mediaType of text/rtf could invoke an
edit window with a proprietary word processing application)

Implementations are encouraged to support other input devices not mentioned here.
Implementations which cannot support upload for the given mediaType must make this apparent to the user.

Example: XML Representation: <upl oad>
<upl oad

(single node binding attri butes)
(common attri butes)

nmedi aType = list of content types
>

<l-- caption, (help|hint|alert|action|extension)* -->
</ upl oad>

(single node binding attributes) - Selection of instance data node, defined in 8.12.2 Single Node Binding
Attributes

common attributes defined in 8.12.1 Common Attributes

mediaType - list of suggested media types, used by the XForms Processor to determine which input methods

apply.
8.6 range

Description: This form control allows selection from a continuous range of values.
Example: Picking From A Range

<range ref="/stats/bal ance" start="-2.0" end="2.0" stepSize="0.5">
<capti on>Bal ance</ capti on>
</ range>

A graphical browser might render this asfollows:

Balance:

1l
||||iJ||||

2 -1 0 +1 +2

Data Binding Restrictions: Binds only the following list of datatypes, or datatypes derived by restriction from those
in the list: xsd: duration, xsd: dat e, xsd: ti me, xsd: dat eTi ne, xsd: gYear Mont h, xsd: gYear,
xsd: ghont hDay, xsd: gDay, xsd: ghont h, xsd: f | oat , xsd: deci mal , xsd: doubl e.

Implementation Requirements: Must allow input of a value corresponding to the bound datatype. Implementations
should inform the user of the upper and lower bounds, as well as the step size, if any. In graphical environments, this
form control may be rendered as a"dlider" or "rotary control”.

Notice that the attributes of this element encapsulate sufficient metadata that in conjunction with the type
information available from the XForms Model proves sufficient to produce meaningful prompts when using
modalities such as speech, e.g., when using an accessibility aid. Thus, an aural user agent might speak a prompt of
the form Please pick a date in the range January 1, 2001 through December 31, 2001.

Example: XML Representation: <r ange>

<r ange
(single node binding attri butes)
(common attri butes)
start = dataval ue
end = dat aval ue
st epSi ze = dataval ue-difference
>

<l-- caption, (help|hint]|alert|action|extension)* -->
</ range>
(single node binding attributes) - Selection of instance data node, defined in 8.12.2 Single Node Binding
Attributes
common attributes defined in 8.12.1 Common Attributes
start - optional hint for the lexical starting bound for the range—alegal value for the underlying data.
end - optional hint for the ending bound for the range—alegal value for the underlying data.
stepSize - optional hint to use for incrementing or decrementing the value. Should be of a type capable of
expressing the difference between two legal values of the underlying data.

8.7 button

Description: This form control is similar to the HTML element of the same name and allows for user-triggered
actions. Thisform control may also be used to advantage in realizing other custom form controls.

Example: Simple Button

<but t on>
<caption>C i ck here</caption>
</ button>

Data Binding Restrictions: Binding not possible for this form control.
Implementation Requirements: The user agent must provide a means to generate an xf or ns: acti vat e event on

the form control. Graphical implementations would typically render this form control as a push-button with the
caption on the button face. Stylesheets can be used to style the button as an image.

Example: XML Representation: <but t on>

<button
(common attri butes)
>
<l-- caption, (help|hint|alert|action|extension)* -->
</ butt on>
common attributes defined in 8.12.1 Common Attributes
8.8 submit

Description: Thisform control initiates submission of al or part of the instance data to which it is bound.
Example: Submit

<submt submtlnfo="tinecard">
<capti on>Subm t Ti mecard</caption>
</ submit >

Data Binding Restrictions. Binding not possible for this form control.

Implementation Requirements: Upon receiving event xf or ms: acti vat e, this form control dispatches event
xforms: submi t tothesubmi t | nf o element specified by required attribute submi t | nf o. If not specified, the
first submi t | nf o element in document order is used.

Example: XML Representation: <submi t >

<submi t
(common attri butes)
subm tinfo = xsd: | DREF #REQUI RED
>
<l-- caption, (help|hint|alert|action|extension)* -->
</ submnit>
submitlnfo - Required reference to element submi t I nf o
common attributes defined in 8.12.1 Common Attributes

8.9 selectOne

Description: This form control allows the user to make a single selection from multiple choices.

Example: Pick A Flavor

<sel ectOne ref="ny:icecreaniny:flavor">
<capt i on>Fl avour </ capti on>
<itene
<capti on>Vani | | a</ capti on>
<val ue>v</val ue>
</itenp
<itenp
<capti on>Strawberry</capti on>

<val ue>s</ val ue>
</litenpr
<itenp
<capt i on>Chocol at e</ capti on>
<val ue>c</ val ue>
</litenp
</ sel ect One>

In the above example, selecting one of the choices will result in the associated value given by element val ue on the
selected item being set in the underlying data instance at the locationi cecr eant f | avor .

A graphical browser might render this form control as any of the following:
Data Binding Restrictions. Binds to any simpleContent.

Implementation Requirements: The caption for each choice must be presented, alowing at all times exactly one
selection. This form control stores the value corresponding to the selected choice in the location addressed by
attribute r ef . The value to be stored is either directly specified as the contents of element val ue, or specified
indirectly through attribute r ef on element val ue.

Note that the datatype bound to this form control may include a non-enumerated value space, e.g., xsd: stri ng.
In this case, control sel ect One may have attribute sel ecti on="open". The form control should then allow
free data entry, as described in 8.1 input.

For closed selections:If the initial instance value matches the storage value of one of the given items, that item is
selected. If thereis no match, the first item isinitially selected.

For open selections: If the initial instance value matches the storage value specified by one of the items, the first
such matching item is selected. Otherwise, the selected value is the initial lexical value. Free entry text is handled
the same asform control i nput 8.1input.

User interfaces may choose to render this form control as a pulldown list or group of radio buttons, among other
options. The selectUI attribute offers a hint as to which rendering might be most appropriate, although any styling
information (such as CSS) should take precedence.

Typically, a stylesheet would be used to determine the exact appearance of form controls, though a means is
provided to suggest an appearance through attribute sel ect Ul . The value of the attribute consists of one of the
following values, each of which may have a platform-specific look and fedl.

radio

checkbox

menu

listbox
Example: XML Representation: <sel ect One>
<sel ect One

(single node binding attri butes)
(common attri butes)

selectU = ("radio" | "checkbox" | "menu" | "listbox")
sel ection = "open" | "closed" : "closed"
>
<l-- caption, (choices|itenitenset)+, (help|hint]|alert]|action|extension)* -->

</ sel ect One>
(single node binding attributes) - Selection of instance data node, defined in 8.12.2 Single Node Binding
Attributes
common attributes defined in 8.12.1 Common Attributes
selectUl - appearance override
selection - optional attribute determining whether free entry isallowed in the list.

8.10 selectMany

Description: This form control alows the user to make multiple selections from a set of choices.
Example: Selecting Ice Cream Flavor

<sel ect Many ref="ny:icecream ny: fl avors">
<capti on>Fl avour s</ capti on>
<choi ces>
<itene
<caption>Vani |l | a</ capti on>
<val ue>v</val ue>
</itenp
<itenp
<capti on>Strawberry</caption>
<val ue>s</val ue>
<litenmp
<itene
<capt i on>Chocol at e</ capti on>
<val ue>c</val ue>
<litenp
</ choi ces>
</ sel ect Many>

In the above example, more than one flavor can be selected.
A graphical browser might render form control sel ect Many as any of the following:

Data Binding Restrictions: any simpleContent capable of holding a sequence.
Note:

A limitation of the Schema list datatypes is that whitespace characters in the storage values (the val ue="..."
attribute of the i t em element) are aways interpreted as separators between individual data values. Therefore,
authors should avoid using whitespace characters within storage values with list simpleContent.

Example: Incorrect Type Declaration

<itenp
<val ue>United States of Anerica</val ue>

</ i i ém>
When selected, thisitem would introduce not one but four additional selection values: "America’, "of", "States", and
"United".

Implementation Hints: An accessibility aid might allow the user to browse through the available choices and
leverage the grouping of choices in the markup to provide enhanced navigation through long lists of choices.

Example: XML Representation: <sel ect Many>

<sel ect Many

(single node binding attri butes)

(common attri butes)

selectU = ("radio" | "checkbox" | "menu" | "listbox")
>

<l-- caption, (choices|itenjitenset)+, (help|hint|alert]|action|extension)* -->
</ sel ect Many>
(single node binding attributes) - Selection of instance data node, defined in 8.12.2 Single Node Binding
Attributes
common attributes defined in 8.12.1 Common Attributes

selectUl - appearance override

8.11 Common Markup for selection controls

8.11.1 choices

This element is used within selection form controls to group available choices. This provides the same functionality
as element opt gr oup inHTML.

Example: XML Representation: <choi ces>

<choi ces>
<l-- caption?, (choices|itenfitenmset)+ -->
</ choi ces>

8.11.2 item

This element specifies the storage value and caption to represent an item in a list. It is found within elements
sel ect One and sel ect Many, or grouped in element choi ces.

Example: XML Representation: <i t en»

<itenp
<l-- caption, value, (help|hint]|alert]|action|extension)* -->
</itenp
id = xsd:1D - optional unique identifier.

8.11.3 itemset

Element i t enset alows the creation of dynamic selections within controls sel ect One and sel ect Many,
where the available choices are determined at run-time. The node-set that holds the available choicesis specified via
attribute nodeset . Child elements capt i on and val ue indirectly specify the caption and storage values. Notice
that the run-time effect of i t enset is the same as using element choi ces to statically author the available
choices.

Example: XML Representation: <i t enset >

<itemset
(node-set binding attributes)
>
<l-- caption, value, (help|lhint|alert]|action|extension)* -->

</itenset>
node-set binding attributes - required node-set selector that specifies the node-set holding the available choices.

The following example shows element i t enset within control sel ect Many to specify a dynamic list of ice
cream flavors:

Example: Dynamic Choice Of Ice Cream Flavors

<nodel id="cone">
<i nst ance>
<ny:icecreanp
<ny: fl avours/ >
</ ny:icecreanr
</instance>
</ model >
<nodel id="flavours">
<i nstance>
<ny: fl avours>
<ny:flavour type="v">

<ny: description>Vanilla</ny:description>
</ ny: flavour>
<ny: flavour type="s">
<ny: descri ption>Strawberry</ny: descripti on>
</ ny:flavour>
<ny: flavour type="c">
<ny: descri pti on>Chocol at e</ ny: descri pti on>
</ ny:flavour>
</ ny:flavours>
</instance>
</ nodel >
<!-- user interaction markup -->
<sel ect Many nodel ="cone" ref="ny:icecream ny:fl avours">
<capti on>Fl avor s</ capti on>
<itenset nodel ="fl avours" nodeset="ny: fl avours/ny:flavour">
<caption ref="ny: description"/>
<val ue ref="@ype"/ >
</itenset>
</ sel ect Many>

8.11.4 value

This element provides a storage value to be used when ani t emis selected.

Data Binding Restriction: All lexical values must be valid according to the datatype bound to the selection control.
Example: XML Representation: <val ue>

<val ue

(single node binding attributes)
>

<l-- ##any -->
</ val ue>

single node binding attributes - optional binding selector that specifies a location from where the storage value
is to be fetched.

If inline content and ar ef attribute are both specified, ther ef attribute is used.

8.12 Common Markup

The preceding form control definitions make reference to child elements and attributes that are common to several
of the form controls. This section defines these common markup components.

8.12.1 Common Attributes

The following attributes are common to many user-interface related X Forms elements.
Example: XML Representation: Common Attributes

xm : |l ang = xsd: | anguage

cl ass = space separated list of classes

navl ndex = xsd: nonNegativelnteger : 0

accessKey = xsd:token
xml:lang - Optional standard XML attribute to specify a human language for this element.
class - Optional selector for astylerule.
navindex - Optiona attribute is a non-negative integer in the range of 0-32767 used to define the navigation
sequence. This gives the author control over the sequence in which form controls are traversed. The default
navigation order is specified in the chapter 4 Processing M odel.

accessK ey - Optional attribute defines a shortcut for moving the input focus directly to a particular form control.
The value of thisistypically asingle character which when pressed together with a platform specific modifier key
(e.g., the alt key) resultsin the focus being set to this form control.

8.12.2 Single Node Binding Attributes

The following attributes define a binding between aform control and an instance data node.
Example: XML Representation: Single Node Binding Attributes

ref = bindi ng-expression
nodel = xsd: | DREF
bi nd = xsd: | DREF
ref - Binding expression. Details in the chapter 6 Constraints. The first-node rule applies to the nodeset selected
here.
model - Optional instance data selector. Details in the section 6.4.3 Binding Refer ences.
bind - Optional reference to a bind element

Itisan error if the nodel idref valuerefersto anid not on anodel element, or if the bi nd idref value refers to an
id not on abi nd element.

8.12.3 Nodeset Binding Attributes

The following attributes define a binding between aform control and a node-set returned by the X Path expression.
Example: XML Representation: Nodeset Binding Attributes

nodeset = bi ndi ng- expressi on

nodel = xsd: | DREF

bi nd = xsd: | DREF
nodeset - Binding expression. Detailsin the chapter 6 Constraints.
model - Optional instance data selector. Details in the chapter 6 Constraints.
bind - Optional reference to a bind element

It isan error if the nodel idref valuerefersto anid not on anodel element, or if the bi nd idref value refersto an
id not on abi nd element.

8.12.4 Common Child Elements

The child elements detailed below provide the ahility to attach metadata to form controls.

Instead of supplying such metadata e.g., the label for a form control as inline content of the contained element
capt i on, the metadata can be pointed to by using a simple XLink attribute x| i nk: hr ef on these elements.
Notice that systematic use of this feature can be exploited in internationalizing X Forms user interfaces by:

» Factoring al human readable messages to a separate resource XML file.

» Using URIsinto this XML resource bundle within individua caption elements

» Finally, an XForms processor can use content negotiation to obtain the appropriate XML resource bundle, e.g.,
based on the accept - | anguage headers from the client, to serve up the user interface with messages
localized to the client's locale.

8.12.4.1 caption
The required element capt i on labels the containing form control with a descriptive label. Additionaly, the

caption makes it possible for someone who can't see the form control to obtain a short description while navigating
between form controls.

Example: XML Representation: <capt i on>

<caption
(common attri butes)
(single node binding attributes)
xl'ink: href = xsd:anyURI

>

<l-- ##any -->
</ caption>
common attributes - defined in 8.12.1 Common Attributes
single node binding attributes - Selection of instance data node, defined in 8.12.2 Single Node Binding
Attributes
xlink:href = xsd:anyURI - link to external caption

The caption specified can exist in instance data, in a remote document, or as inline text. If multiple captions are
specified in this element, the order of preferenceis: r ef , x| i nk: hr ef , inline.

An accessibility aid would typically speak the metadata encapsulated here when the containing form control gets
focus.

8.12.4.2 help

The optional element hel p provides a convenient way to attach help information to a form control. This is
equivalent to axf or ms: hel p event handler that respondswith a<message t ype="nodel ess">.

Example: XML Representation: <hel p>

<hel p
(common attri butes)
(single node binding attri butes)
xl'ink: href = xsd:anyURI

>

<l-- ##any -->
</ hel p>
(common attributes) - defined in 8.12.1 Common Attributes
single node binding attributes - Selection of instance data node, defined in 8.12.2 Single Node Binding
Attributes
xlink:href = xsd:anyURI - link to external help

The message specified can exist in instance data, in a remote document, or as inline text. If multiple captions are
specified in this element, the order of precedenceis: r ef , xI i nk: hr ef ,inline.

8.12.4.3 hint

The optional element hi nt provides a convenient way to attach hint information to a form control. This is
equivalent to axf or ms: hi nt event handler that responds with a<nmessage type="epheneral " >.

Example: XML Representation: <hi nt >

<hi nt
(common attri butes)
(single node binding attributes)
xlink: href = xsd: anyURI
>
<l -- ##any -->
</ hi nt >
(common attributes) - defined in 8.12.1 Common Attributes
single node binding attributes - Selection of instance data node, defined in 8.12.2 Single Node Binding
Attributes

xlink:href = xsd:anyURI - link to external hint

The message specified can exist in instance data, in a remote document, or as inline text. If multiple captions are
specified in this element, the order of precedenceis: r ef , xI i nk: hr ef , inline.

8.12.4.4 alert

The optional element al ert provides a convenient way to attach alert or error information to a form control. This
isequivalent to axf or ms: al ert event handler that responds with a<nmessage t ype="nodal " >.

Example: XML Representation: <al ert >

<al ert
(common attri butes)
(single node binding attri butes)
xl'ink: href = xsd:anyURI

>

<l-- ##any -->
</alert>
(common attributes) - defined in 8.12.1 Common Attributes
single node binding attributes - Selection of instance data node, defined in 8.12.2 Single Node Binding
Attributes
xlink:href = xsd:anyURI - link to external alert

The message specified can exist a in instance data, in a remote document, or as inline text. If multiple captions are
specified in this element, the order of precedenceis: r ef , xI i nk: hr ef ,inline.

8.12.4.5 extension

Optional element ext ensi on isacontainer for application-specific extension elements from any namespace other
than the X Forms namespace. This specification does not define the processing of this element.

Example: XML Representation: <ext ensi on>

<ext ensi on>
<!'-- ##other -->
</ ext ensi on>

For example, RDF metadata could be attached to an individual form control as follows:

<i nput ref="dataset/user/email" id="email-input">
<capti on>Enter your enmil address</caption>
<ext ensi on>
<rdf: RDF xm ns:rdf ="http://ww.w3. org/ 1999/ 02/ 22- r df - synt ax- ns#" >
<rdf: Description rdf:about="#enail -input">
<ny: addr essBook>per sonal </ my: addr essBook>
</rdf: Description>

</ r df : RDF>
</ ext ensi on>
</i nput >

9 XForms User Interface

This chapter covers X Forms features for combining form controlsinto user interfaces.

All form controls defined in 8 Form Controls are treated as individual units for purposes of visua layout e.g., in
XHTML processing. Aggregation of form controls with markup defined in this chapter provides semantics about the
relationship among user interface controls; such knowledge can be useful in delivering a coherent Ul to small
devices. For example, if the user interface needs to be split up over several screens, controls appearing inside the

same aggregation would typically be rendered on the same screen or page.

9.1 group

The gr oup element is used as a container for defining a hierarchy of form controls. Groups can be nested to create
complex hierarchies.

Example: XML Representation: <gr oup>

<gr oup
(single node binding attributes)
(common attri butes)

>
<l-- caption?, ##all -->
</ group>

(single node binding attributes) - Selection of instance data node, defined in 8.12.2 Single Node Binding
Attributes

(common attributes) - defined in 8.12.1 Common Attributes

Example: Grouping Related Controls

<group ref="address">
<capt i on>Shi ppi ng Address</capti on>

<input ref="line_1">

<capti on>Address |ine 1</caption>
</i nput >
<input ref="line_2">

<capti on>Address |ine 2</caption>
</i nput >

<i nput ref="postcode">
<capt i on>Post code</ capti on>
</i nput >
</ group>
The hierarchy defined by nested group elements is used to determine the traversal order specified by attribute
navl ndex on form controls. Setting the input focus on a group results in the focus being set to the first form
control in the tabbing order within that group.

9.2 switch

The XForms model allows the authoring of dynamic user interfaces that vary based on the current state of the
instance data being populated—see model item property r el evant 6.1.4 relevant. As an example, portions of a
guestionnaire pertaining to the user's automobile may become relevant only if the user has answered in the
affirmative to the question 'Do you own a car?. Another example is when the underlying XForms model contains
conditional structures.

This section defines construct swi t ch that allows the creation of user interfaces where the user interface can be
varied based on user actions and events. Element swi t ch contains one or more case elements. Markup contained
within element case specifies the user interface that is displayed when that case is selected. Boolean attribute
sel ect ed of element case determines the selected state and can be manipulated programmatically via the DOM,
or declaratively via XForms action t oggl e. Attributei d of case isused within action t oggl e for this purpose.
The following example demonstrates the use of swi t ch.

Example: switch

<switch id="sw'>
<case id="in" selected="true">
<i nput ref="your name" >
<capti on>Pl ease tell me your name</caption>

<action ev:event="activate">
<toggl e case="out"/ >
</ action>
</i nput >
</ case>
<case id="out" sel ected="fal se">
<htm : p>Hel | 0 <out put ref="your nane" />.
<button id="editButton">
<capti on>Edi t </ capti on>
<action id="editAction" ev:event="activate">
<toggl e case="in"/>
</ action>
</ but t on>
</htm :p>
</ case>
</ swi tch>

The above results in the portion of the user interface contained in the first case being displayed initially. This
prompts for the user's name; filling in a value and activating the control e.g., by pressing r et ur n resultsin XForms
event acti vat e. Event acti vat e is handled by the attached handler—element act i on. This handler uses
XForms actiont oggl e to select the case withi d="out ". This sets attribute sel ect ed oncase i d="out"
to t rue. The markup contained in the selected case displays the name the user entered along with an edi t
button. Activating the edit button in turn resultsin the attached handler selecting case i d="in".

Example: XML Representation: <swi t ch>

<switch

(common attri butes)
>

<l-- case+ -->
</ swi tch>

(common attributes) - defined in 8.12.1 Common Attributes
Example: XML Representation: <case>

<case

sel ected = xsd: bool ean
>

<l-- ##any -->
</ case>

selected = xsd:boolean - optional selection status for the case.

If multiple cases within aswi t ch are marked as sel ect ed="tr ue", the first selected case remains and al
others are deselected. If none are selected, the first becomes selected.

9.3 repeat

The XForms Model alows the definition of repeating structures such as multiple items within a purchase order.
When defining the XForms Model, such higher-level collections are constructed out of basic building blocks;
similarly, this section defines user interface construct r epeat that can bind to data structures such as lists and
collections. Element r epeat encapsulates a Ul mapping over a homogeneous collection, in other words, a
collection consisting of dataitems having the same type and structure.

Example: Shopping Cart

<repeat nodeset="/cart/itens/item >
<input ref="." .../><htnm:br/>
</repeat >

Element r epeat operates over a homogeneous collection by binding the encapsulated user interface controls to
each element of the collection. Attributes on element r epeat specify how many members of the collection are

presented to the user at any given time. XForms actionsi nsert, del et e and set Repeat Cur sor can be used
to operate on the collection—see 10 XForms Actions. Another way to view repeat processing (disregarding special
user interface interactions) is to consider "unrolling” the repeat. The above example is similar to the following
(assuming four item elements in the returned node-set):

Example: Repeat Unrolled

<!-- unrolled repeat -->
<input ref="/cart/itenms/iten1]" .../><htm :br/>
<input ref="/cart/itenms/item2]" .../><htm:br/>
<input ref="/cart/itens/item3]" .../><htm :br/>
<input ref="/cart/itens/item4]" .../><htm:br/>

Notice that the model for the collection being populated would typically have defined attributes m nCccur s and
maxQccur s; these values may in turn determine if the user agent displays appropriate Ul controls for the user to
add or delete entries in the collection.

Example: Homogeneous Collection

<nodel >
<i nst ance>
<ny:|ines>
<ny:line name="a">
<ny: price>3.00</ny: price>
</ny:line>
<ny:line name="b">
<ny: price>32. 25</ny: pri ce>
</nmy:line>
<ny:line nane="c">
<ny: price>132.99</ny: pri ce>
</ny:l1ne>
</ny:lines>
</instance>
</ model >

<repeat id="lineset" nodeset="ny:lines/ny:line">
<l nput ref="ny:price">
<caption>Line Itenx/caption>
</i nput >
<i nput ref="@nane">
<capt i on>Nane</ capti on>
</i nput >
</repeat >

<but t on>
<caption>lnsert a newitemafter the current one</caption>
<action ev:event="activate">
<i nsert nodeset="ny:lines/ny:line"
at="cursor('lineset')"
position="after"/>
<setValue ref="ny:lines/ny:line[cursor('lineset')]/ @ane"/>
<setValue ref="ny:lines/ny:line[cursor('lineset')]/price">0.00</setVal ue>
</ action>
</ button>

<but t on>
<capti on>renove current itenx/caption>
<del ete ev:event="activate" nodeset="nmny:lines/ny:line"
at="cursor('lineset')"/>
</ but t on>
Example: XML Representation: <r epeat >

<r epeat
(node-set binding attributes)
(common attri butes)
startlndex = xsd:positivelnteger : 1
nunber = xsd: nonNegati vel nt eger

>

<l-- ##any -->
</repeat >
(nodeset binding attributes) - Selection of context node-set, defined in 8.12.3 Nodeset Binding Attributes
(common attributes) - defined in 8.12.1 Common Attributes
startIndex - 1-based hint to the XForms Processor as to which starting element from the collection to display.
number - hint to the XForms Processor as to how many elements from the collection to display.

9.3.1 Repeat Processing

The markup contained within the body of element r epeat specifies the user interface to be generated for each
member of the underlying collection. During user interface initiaization (see 4.2.4 xforms:UllInitialize), the
following steps are performed for r epeat :

1. Attribute nodeset isevaluated to locate the homogeneous collection to be operated on by thisr epeat .

2. The corresponding nodes in element i nst ance in the source document are |ocated—these nodes provide initial
values and also serve as a prototypical instance for constructing members of the repeating collection.

3. Thecursor for this repeating structure isinitialized to point at the head of the collection.

4. The user interface template specified within element r epeat is bound to this prototypical instance. If thereisa
type mismatch between the prototypical instance and the binding restrictions for the user interface controls, an
error is signaled and processing stops.

5. User interface as specified by ther epeat is generated for the requisite number of members of the collection as
specified by attributes on element r epeat , and model item constraints mi nOccur s and maxCccur s.

The user interface markup for repeating structures adds encapsulation metadata about the collection being popul ated.
The processing model for repeating structures uses a cursor that points to the current item in the data instance. This
repeat cursor is accessed via XForms extension functions cur sor 7.4.2.5 cursor() and manipulated via XForms
action set Repeat Cur sor 10.10 setRepeatCursor. This cursor is used as a reference point for i nsert and
del et e operations. Notice that the contained XForms form controls inside element r epeat do not explicitly
specify the index of the collection entry being populated. This is intentional; it keeps both authoring as well as the
processing model simple.

The binding expression attached to the repeating sequence returns a node-set of the collection being populated, not
an individual node. Within the body of element r epeat , binding expressions are evaluated with a context node of
the node determined by the repeatCursor. Repeat processing uses XPath expressions to address the collection over
which element r epeat operates. The XPath expression used as the value of attribute nodeset must select a
node-set of contiguous child element nodes, with the same local name and namespace name of a common parent
node—this ensures that the node-set represent a homogeneous collection. The behavior of element r epeat with
respect to other XPath node-sets is undefined. The initial instance data supplies the prototypica member of the
homogeneous collection, and this is used during Ul initialization—4.2.4 xforms:UlInitialize—to construct the
members of the homogeneous collection. This prototypical instance is aso used by action i nsert when creating
new members of the collection. To create homogeneous collections, the initial instance data must specify at least one
member of the collection; this requirement is similar to requiring instance datain addition to a schema, and the same
justification applies.

The form controls appearing inside r epeat need to be suitable for populating individual items of the collection. A
simple but powerful consequence of the above is that if the XForms Model specifies nested collections, then a
corresponding user interface can nest r epeat elements.

9.3.2 Nested Repeats

It is possible to nest repeat elements to create more powerful user interface for editing structured data. E.2 Editing
Hierarchical Bookmarks Using XForms is an example of a form using nested repeats to edit hierarchical data
consisting of bookmarks within multiple sections. Notice that an inner repeat's cursor aways starts from 1. Consider
thefollowing i nsert statement that appears as part of that example.

Example: Repeat Cursor And Nested Repeats

<xforms:insert
nodeset ="/ bookmar ks/ secti on[cursor (' repeat Secti ons')]/ bookmar k"
at ="cursor (' repeat Bookmarks')"
position="after"/>

The above i nsert statement is used in that example to add new bookmark entries into the currently selected
section. The inner (nested) repeat operates on bookmarks in this selected section; The cursor—as returned by
XForms function cur sor —for this inner repeat starts at 1. Hence, after a new empty section of bookmarks is
created and becomes current, the first insert bookmark operation adds the newly created bookmark at the front of the
list.

9.3.3 User Interface Interaction

Element r epeat enables the binding of user interaction to a homogeneous collection. The number of displayed
items might be less than the total number available in the collection. In this case, the presentation would render only
a portion of the repeating items at a given time. For example, a graphical user interface might present a scrolling
table. The current item indicated by the repeat cursor should be presented at all times, for example, not allowed to
scroll out of view. The XForms Actions enumerated at 10 XForms Actions may be used within event listeners to
mani pulate the homogeneous collection being populated by scrolling, inserting and deleting entries.

Notice that the markup encapsulated by element r epeat acts as the template for the user interaction that is
presented to the user. As a conseguence, it is not possible to refer to portions of the generated user interface via
statically authored i dr ef attributes. A necessary consequence of this is that XForms 1.0 does not specify the
behavior of construct swi t ch within element r epeat . Future versions of XForms may specify the behavior of
swi t ch insider epeat based on implementation experience and user feedback.

10 XForms Actions

All form controls defined in this specification have a set of common behaviors that encourage consistent authoring
and look and feel for X Forms-based applications. This consistency comes from attaching a common set of behaviors
to the various form controls. In conjunction with the event binding mechanism provided by [XML Events], these
handlers provide a flexible means for forms authors to specify event processing at appropriate points within the
XForms user interface. XForms actions are declarative XML event handlers that capture high-level semantics. As a
conseguence, they significantly enhance the accessibility of XForms-based applications in comparison to previous
web technologies that relied exclusively on scripting.

NOTE: This example is based on the XML Events specification [XML Events], which is proceeding independently
from XForms, and thus might be slightly incorrect.

Example: Action Syntax

<xforns: button>
<xf orms: capti on>Reset </ xf or ms: capti on>
<xforns:resetlnstance ev:event="xforns: acti vate"/>
</ xf orms: butt on>

This example recreates the behavior of the HTML reset button, which this specification does not define as an
independent form control.

For each built-in XForms action, this chapter lists the following:

Name

Description of behavior
XML Representation
Sample usage

All elements defined in this chapter explicitly allow global attributes from the XML Events namespace, and apply
the processing defined in that specification in section 2.3 [XML Events].

10.1 dispatch

This action dispatches an XForms Event to a specific element identified by the t ar get attribute. Two kinds of
event can be dispatched:

One of the predefined XForms events (i.e.,, xforms.event-name), in which case the bubbles and cancelable
attributes are ignored and the standard semantics as defined in the Processing model apply.
An event created by the X Forms author with no predefined X Forms semantics and as such not handled by default
by the XForms processor.

Example: XML Representation: <di spat ch>

<di spat ch
name = xsd: NMTOKEN
target = xsd: | DREF
bubbl es = xsd: bool ean : true
) cancel abl e = xsd: bool ean : true
>
name = xsd:NMTOKEN - required name of the event to dispatch.
target = xsd:IDREF - required reference to the event target.
bubbles = xsd:boolean : true - boolean indicating if this event bubbles—as defined in DOM2 events.
cancelable = xsd:boolean : true - boolean indicating if this event is cancelable—as defined in DOM 2 events.

10.2 refresh

This action dispatches an xf orns: r ef resh event. This action results in the XForms user interface being
refreshed, and the presentation of user interface controls being updated to reflect the state of the underlying instance
data --see 4.3.15 xforms:refresh

Example: XML Representation: <r ef r esh>
<refresh/>

10.3 recalculate

This action dispatches an xf or ms: r ecal cul at e event. As aresult, instance data nodes whose values need to be
recomputed are updated as specified in the processing model --see 4.3.17 xforms:recalculate.

Example: XML Representation: <r ecal cul at e>
<recal cul ate/ >

10.4 revalidate

This action dispatches an xf or ns: r eval i dat e event. This results in the instance data being revalidated as

specified by the processing model --see 4.3.16 xforms:revalidate
Example: XML Representation: <r eval i dat e>
<reval i date/ >

10.5 setFocus

This action sets focus to the form control referenced by the i dr ef attribute by dispatching an xf or ns: f ocus
event. Note that this event isimplicitly invoked to implement X Forms accessibility features such asaccessKey.

Example: XML Representation: <set Focus>

<set Focus
i dref = xsd: | DREF
/>
idref = xsd:I DREF - required reference to a form control

Setting focus to a repeating structure sets the focus to the member represented by the repeat cursor.

10.6 loadURI

This action traverses the specified XLink.
Example: XML Representation: <l oadURI >

<l oadURI
(single node binding attri butes)
xlink: href = xsd:anyURI
) xlink:show = ("new' | "replace" | "enmbed" | "other" | "none")
>
(single node binding attributes) - Selects the instance data node containing the URI.
xlink:href - optional URI to |oad.
xlink:show - optional link behavior specifier.

Either the single node binding attributes, pointing to a URI in the instance data, or the attribute x1 i nk: hr ef are
required. If both are present, the action has no effect.

Possible values for attribute x| i nk: show have the following processing for the document (or portion of a
document) reached by traversing the link:

¥ document is 1oaded into a new window (or other presentation context). Form processing in the original window
continues.

rﬁrl)(l,\"’lffgcument is loaded into the current window. Form processing is interrupted, exactly as if the user had manually
requested navigating to a new document.

?nggocument is incorporated into the current window in an application-specific manner. Form processing
continues.

?Wdocument isloaded in an application-specific manner. The application should look for other markup present in
the link to determine the appropriate behavior.

A& tocument is loaded in an application-specific manner. The application should not look for other markup present
in the link to determine the appropriate behavior.

10.7 setValue

This action explicitly sets the value of the specified instance data node.
Example: XML Representation: <set Val ue>

<set Val ue
(single node binding attributes)
val ue = XPat h expression

>

<l-- literal value -->
</ set Val ue>
(single node binding attributes) - Selects the instance data node where the value is to be stored.
value = XPath expression - XPath expression to evaluate, with the result stored in the selected instance data
node.

The element content of set Val ue specifies the literal value to set; thisis an alternative to specifying a computed
valueviaattribute val ue. The following two examples contrast these approaches:

Example: setValue with Expression
<set Val ue bi nd="put-here" value="a/b/c"/>

This causes the string value at a/ b/ ¢ in the instance data to be placed on the single node selected by the bind
element withi d="put - her e".

Example: setValue with Literal

<set Val ue bind="put-here">literal string</setValue>

This causes the value "literal string” to be placed on the single node selected by the bind element with
i d="put - here".

If neither aval ue attribute nor text content are present, the effect is to set the value of the selected node to the
empty string ("").

10.8 submitlnstance

This action initiates submit processing by dispatching an xforns: submt event. Processing of event
xf or ns: submi t isdefined in the processing model—see 4.4.1 xfor ms: submit.

Example: XML Representation: <submi t | nst ance>

<subm t I nstance
subm tinfo = xsd: | DREF />
id = xsd:1D - optional unique identifier.
submitlnfo = xsd:1DREF - optional referenceto asubmi t | nf o element.
Note:

This XForms Action is a convenient way of expressing the following:
<di spatch target="mysubni tinfo" name="subm tlnstance"/>

10.9 resetinstance

This action initiates reset processing by dispatching an xf or ns: r eset event to the specified nodel . Processing
of event xf or ms: r eset isdefined in the processing model—see 4.3.18 xforms:reset.

Example: XML Representation: <r eset | nst ance>

<reset | nstance
nodel = xsd: | DREF
/>
model = xsd:IDREF - Selection of instance data for reset, defined in 8.12.3 Nodeset Binding Attributes

10.10 setRepeatCursor

This action marks a specific item as current in a repeating sequence (within 9.3 repeat).
Example: XML Representation:Action <set Repeat Cur sor >

<set Repeat Cur sor
repeat = xsd:| DREF
cursor = XPat h expression that eval uates to nunber
/>
repeat = xsd: | DREF - required reference to a repeat
cursor = XPath expression that evaluatesto number - required 1-based offset into the sequence.

10.11 insert

This action is used to insert new entries into a homogeneous collection, e.g., a set of items in a shopping cart.
Attributes of action i nsert specify the insertion in terms of the collection in which a new entry is to be inserted,
and the position within that collection where the new node will appear. The new node is created by cloning the final
member of the homogeneous collection specified by the initialization instance data. In this process, nodes of type
xsd: | Dare not copied. The rulesfor insert processing are as follows:

1. The homogeneous collection to be updated is determined by evaluating binding attribute nodeset .

2. The corresponding node-set of the initial instance data is located to determine the prototypical member of the
collection. The final member of this collection is cloned to produce the node that will be inserted. Finaly, this
newly created node is inserted into the instance data at the position specified by attributesposi ti on and at .

Attribute at is evaluated to determine the insertion index—a numerical value that is the index into the node-set.
Attribute posi t i on specifies whether the new node is inserted before or after thisindex.

Therulesfor selecting the index are as follows:

1. The return value of the XPath expression in attribute at is processed according to the rules of the XPath
functionr ound() . For example, theliteral 1. 5 becomes 2, and theliteral ' st ri ng' becomes NaN.

2. If theresult is NaN, the insert operation has no effect.

3. If theresult is not avalid index for the node-set, it is clipped to either 1 or the size of the node-set, whichever
iscloser.

3. Finally, the cursor for any r epeat that is bound to the homogeneous collection where the node was added is
updated to point to the newly added node.

This action results in the insertion of newly created data nodes into the XForms data instance. Such nodes are
constructed as defined in the initialization section of the processing model—see 4.2 Initialization Events.
Following the insertion of the newly created node into the instance data, events xf orns: recal cul at e,
xforns:revalidate and xforns:refresh are triggered in sequence. As an example, this causes the
instantiation of the necessary user interface for populating a new entry in the underlying collection when used in
conjunction with repeating structures 9.3 repeat.

Example: XML Representation:Action <i nsert >

<i nsert
(node-set binding attributes)
at = XPath expression
) position = "before" | "after"
>
(nodeset binding attributes) - Selection of instance data nodes, defined in 8.12.3 Nodeset Binding Attributes
at - required XPath expression evaluated to determine insert location.

position - required selector if insert before/after behavior.

An example of using i nsert with a repeating structure is located at 9.3 repeat. Note that XForms Action
set Val ue can be used in conjunction with i nsert to provide initial values for the newly inserted nodes.

10.12 delete

This action deletes nodes from the instance data. The rules for delete processing are as follows:

1. The homogeneous collection to be updated is determined by evaluating binding attribute nodeset . If the
collection is empy, the delete action has no effect.

2. The n-th node is deleted from the instance data, where n represents the number returned from node-set index
evaluation, defined in 10.11 insert.

3. If the last item in the collection is removed, the cursor position becomes 0. Otherwise, the cursor will point to the
new n-th item.

This action results in deletion of nodes in the instance data. Following the specified deletion, events
xforms: recal cul ate, xfornms: reval i date and xforns: refresh are triggered in sequence. As an
example, this causes the destruction of the necessary user interface for populating a deleted entry in the underlying
collection when used in conjunction with repeating structures 9.3 repeat.

Example: XML Representation:Action <del et e>

<del ete
(node-set binding attributes)

at = XPath expression
/>

(nodeset binding attributes) - Selection of instance data nodes, defined in 8.12.3 Nodeset Binding Attributes
at - XPath expression evaluated to determine insert location.

An example of using del et e with arepeating structure islocated at 9.3 repeat.

10.13 toggle

This action selects one possible case from an exclusive list of choices e.g., encapsulated by swi t ch see 9.2 switch,
by:
1. Dispatching an xf or ns: desel ect event to the currently selected item.

2. Dispatching an xf or m sel ect event to theitem to be selected.
Example: XML Representation: Action <t oggl e>

<t oggl e
case = xsd: | DREF
/>

case = xsd: | DREF - required reference to a case section inside the conditional construct
Thet oggl e action adjusts all sel ect ed attributes on the affected casesto reflect the new state.

10.14 script

This action encapsulates an event handler authored in the specified scripting language. The handler may be inline,
i.e.,, as PCDATA content of element scr i pt ; aternatively it may be contained in an external resource and referred
toviaXML-events attribute ev: handl er . Optiona attribute r ol e serves as documentation for the handler.

Example: XML Representation: Action <scri pt >

<scri pt
type = xsd:string
rol e=xsd: string

>

<l -- #CDATA -->
</script>
type = xsd:string - required mime-type identifier of scripting language.
role =xsd:string - Optional descriptive text documenting the contained script.

10.15 message

This action encapsul ates a message to be displayed to the user.
Example: XML Representation: <message>

<message

(single node binding attributes)

xl'ink: href = xsd:anyURI

| evel = "epheneral" | "nodel ess" | "nodal"
>

<!-- mixed content -->
</ message>
(single node binding attributes) - optional attributes that point to the instance data for a string message.
xlink:href = xsd:anyURI - optional specifier of an external resource for the message.
level - required message level identifier.

The message specified can exist in instance data, in a remote document, or as inline text. If multiple captions are
specified in this element, the order of preferenceis: r ef , xI i nk: hr ef | inline.

A graphical browser might render an ephemeral message as follows:

%reetl

Pleaze enter the munber and street name

A graphical browser might render a model ess message as follows:

Flease enter your password —it
will not be visible as you type..

e e ok e e e

[7]Help - Forgotten Password

Have you forgotten your password? Simply

call 1900-555-1212 and have a major credit
card handy.

A graphical browser might render amodal message as follows:

St e sk x—

This field is required (Street)

10.16 action

Actionact i on isused to group multiple actions.
Example: XML Representation: <acti on>

<action
>

<l-- Action handlers -->
</ action>

When using element act i on to group actions, care should be taken to list the event on element act i on, rather
than on the contained actions.

Example: Grouping Actions

<but t on>
<caption>dick ne</caption>
<action ev:event="xforns:activate">
<r eset | nst ance/ >
<set Val ue/ >
</ action>
</ but t on>

Notice that in the above example, ev: event =" xf or ns: acti vat e" occurs on element acti on. Placing
ev: event ="xf orns: acti vat e" on either or both of the contained actions will have no effect. Thisis because
the above example relies on the defaulting of XML-Event attributes obser ver and handl er . As defined in the
XML-Events specification, if both observer and handler attributes are omitted, then the parent is the observer.
Placing ev: event =" xforms: acti vate" on the children of element acti on therefore causes element
act i on to become the observer for the individual actions. Consequently, these actions will never be triggered since
events arrive at element but t on, not element act i on.

11 Conformance

11.1 Conformance Levels

The XForms specification is designed for implementation on hardware platforms of all sizes, from tiny hand-held
devices to high-powered servers. Clearly, a one-size-fits-all approach has its drawbacks. For this reason, there are
two conformance levels for XForms Processors, documents, and authoring tools.

11.1.1 XForms Basic

This conformance level is suitable for devices with limited computing power, such as mobile phones, hand-held
computers, and appliances. This conformance level uses a subset of XML Schema and does not include any
resource-intensive features. Resource-limited XForms Processors may define implementation limits on the
maximum size of a node-set returned by XPath expressions. XForms Basic implementations should return
"basi c" for theconf or mance- | evel property.

11.1.2 XForms Full

This conformance level is suitable for more powerful forms processing, such as might be found on a standard
desktop browser or a server. XForms Full implementations should return "f ul | " for the conf or mance- | evel

property.

11.2 Conformance Description

11.2.1 Conforming XForms Processors

« All XForms Processors must support the required portions of the specifications normatively listed as references
(B References).

» XForms Basic Processors must implement all required features labeled Basic.
» XForms Full Processors must implement all required features.

11.2.2 Conforming XForms Documents

All XForms Containing Documents must conform to the required portions of the specifications normatively listed as
references (B References). XForms elements are typically inserted into a containing document in multiple places.
The root element for each individual fragment must be nodel , a form control, or one of group, swi tch,
r epeat . Individual XForms fragments must be schema-valid against the Schema for XForms (A Schema for
XForms).

All XForms Basic conformant Documents must conform to all required portions of this specification marked as
Basic, and additionally not include any features not specifically marked as Basic.

All XForms Full conformant Documents must conform to all required portions of this specification.

11.2.3 Conforming XForms Generators

XForms Basic Generators must create conforming X Forms Basic documents.

XForms Full Generators must create conforming XForms Basic and XForms Full documents, depending on the
author's choice.

12 Glossary Of Terms

Ft&'éﬂ'ﬁ\% on: A "binding" connects an instance data node to a form control or to a model item constraint by using a
binding expression as alocator. |

Fti)%ﬂimi Sﬁpmﬂgath L ocationPath expression used in abinding.]
E%WM%%% expression used by model item properties such as relevant and calculate to include dynamic

functionality in XForms.]

Fﬁ&ﬁ?ﬁﬂiBﬂ:dﬂ%«B@aﬁc document, for example an XHTML document, in which one or more <model> elements are
found.]

R%ﬁmﬁ)n: From XML Schema [XML Schema part 2]: A 3-tuple, consisting of @) a set of distinct values, called its
value space, b) a set of lexical representations, called its lexical space, and c) a set of facets that characterize
properties of the value space, individual values or lexical items.]

Fﬁ‘éﬁnition: From XML Schema [XML Schema part 2]: A single defining aspect of a value space. Generally
speaking, each facet characterizes a value space along independent axes or dimensions.]

F[BEWI%BBHPIAI’] XForms user interface control that serves as a point of user interaction.]

tf)%ﬂ'ﬁ?ﬁ&qt%n internal tree representation of the values and state of al the instance data nodes associated with a
particular form.]

[B%ﬂ?ﬁ:ﬁ gr?:t%r?{)%ath node from the instance data.]

[‘Iﬁé}ﬁﬁlt%ﬁcﬁmm XML Schema[XML Schemapart 2]: A lexical spaceisthe set of valid literals for a datatype.]
fﬂ)%‘f‘ﬁ'uﬂ‘aﬁ‘ An instance data node with associated constraints. |

fﬂ)%?ﬁh HSW ?:c?ﬂ%aggchema constraint or an XForms constraint. |

%@ﬁm Sﬂ'?%r?@riction, applied to form data, based on XML Schema datatypes. |

P@Qﬁ%ﬁ?gﬁ? From XML Schema[XML Schemapart 2]: A set of values for a given datatype. Each value in the value
space of a datatype is denoted by one or more literalsin itslexical space.]

ffzfé?iﬂ?ﬁ SR.nﬂr%iction, applied to form data, based on XForms-specific expressions.]

ibté?\‘ﬂi‘ﬁ%?@l% non-visible definition of an XML form as specified by XForms. The XForms Model defines the
individual model items and constraints and other run-time aspects of XForms.]

fﬁféffﬂ?ﬁ Sﬂpﬁ%ﬂware application or program that implements and conforms to the X Forms specification.]

A Schema for XForms

<?xm version="1.0"7?>
<l-- edited with XML Spy v4.0.1 U (http://ww. xm spy.com) by M cah Dubi nko (XForns W5 -->
<l--$ld: index-all.fo,v 1.4 2002/01/16 23:32:13 tvraman Exp $-->
<xsd: schema t ar get Nanespace="http://ww. w3. or g/ 2002/ 01/ xf or ns"
xm ns: ev="http://ww. w3. org/ 2001/ xm - event s"
xm ns: xl i nk="http://ww. w3. org/ 1999/ x| i nk"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: xfornms="http://ww.w3. org/ 2002/ 01/ xf or ns"
el enent For nDef aul t ="qual i fi ed">
<I--
Open | ssues

Need a datatype for 'list of nmedi aTypes' on nedi aType of <upl oad>
-->
<xsd:inmport nanespace="htt p://ww. w3. or g/ XM./ 1998/ nanespace" schenalLocati on="http://ww.
<xsd: annot at i on>
<xsd: docunent ati on>Get access to xm :lang and friends</xsd: docunent ati on>

</ xsd: annot ati on>
</ xsd: i nport>

<xsd:inmport nanespace="http://ww. w3. org/ 1999/ xl i nk" schemaLocat i on="XLi nk- Schema. xsd"/ >
<xsd:inmport nanespace="http://ww. w3. org/ 2001/ xm - event s" schemaLocati on="XM.- Event s- Sch
<l--

structural elenents

-->

<xsd:attributeG oup nane="horzAttrs">
<xsd: annot at i on>
<xsd: docunentati on>Attributes for _every_ element in XForns</xsd: docunentation>
</ xsd: annot at i on>
<xsd: anyAttri but e namespace="##ot her"/>
</ xsd: attributeG oup>
<xsd: el ement nane="nodel ">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="xforns:instance" m nCccurs="0"/>
<xsd: el ement ref="xforms: schema" mi nCccurs="0"/>
<xsd: sequence m nCccurs="0" maxQccur s="unbounded" >
<xsd: choi ce>
<xsd: el ement ref="xforns:subnitlnfo"/>
<xsd: el ement ref="xforns: privacy"/>
<xsd: el ement ref="xforns: bind"/>
<xsd: el ement ref="xforms:action"/>
<xsd: el ement ref="xforns: extension"/>
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: sequence>
<xsd:attributeGoup ref="xfornms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd: attri bute nane="extensi onFuncti ons" type="xforns: QNaneLi st" use="optional "/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane="schem">
<xsd: annot ati on>
<xsd: docunent ati on>scherma cont ai ner. </ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: any nanmespace="##ot her"/ >
</ xsd: sequence>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforns:linkingAttributes"/>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nanme="i nstance">
<xsd: annot ati on>
<xsd: docunent ati on>i nst ance contai ner. </ xsd: docurnent ati on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: any nanmespace="##any" maxQCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attributeGoup ref="xforms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforns:linkingAttributes"/>
</ xsd: conpl exType>
</ xsd: el emrent >
<xsd: el ement nane="privacy">

<xsd: annot at i on>
<xsd: docunent ati on>privacy reference. </ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nanme="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforms:|inkingAttributes"/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane="subm tl| nfo">
<xsd: annot ati on>
<xsd: docunent ati on>subnmit info container.</xsd: docunentati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence m nCccurs="0" maxQccur s="unbounded" >
<xsd: group ref="xforns:acti onG oup"/>
</ xsd: sequence>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attributeGoup ref="xforns: bindFirstAttributes"/>
<xsd:attribute nane="id" type="xsd:|ID' use="optional"/>
<xsd:attribute nane="action” type="xsd:anyURl " use="optional"/>
<xsd: attribute nane="nmedi aTypeExt ensi on" use="optional " defaul t="none">
<xsd: si npl eType>
<xsd: uni on nenber Types="xf or ms: QNaneBut Not NCNAME" >
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enumnerati on val ue="none"/>
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: uni on>
</ xsd: si npl eType>
</ xsd: attri bute>
<xsd: attribute name="nmet hod" use="optional" default="post">
<xsd: si npl eType>
<xsd: uni on menber Types="xf or ns: QNanmeBut Not NCNANME" >
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enurner ati on val ue="post"/>
<xsd: enuner ati on val ue="get"/ >
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: uni on>
</ xsd: si npl eType>
</ xsd: attri bute>
<xsd: attribute nane="version" type="xsd: NMTOKEN' use="optional "/>
<xsd: attribute nanme="indent" type="xsd: bool ean" use="optional"/>
<xsd: attri bute nane="encodi ng" type="xsd:string" use="optional"/>
<xsd:attribute nane="nmedi aType" type="xsd:string" use="optional"/>
<xsd:attribute nane="om t XM_Decl arati on" type="xsd: bool ean" use="optional"/>
<xsd: attribute nanme="standal one" type="xsd: bool ean" use="optional "/>
<xsd: attribute name="CDATASecti onEl ements" type="xforms: QNaneLi st" use="optional "/>
<xsd:attribute nane="repl ace" use="optional" default="all">
<xsd: si npl eType>
<xsd: uni on nmenber Types="xf or ns: QNanmeBut Not NCNAVE" >
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enuneration value="all"/>
<xsd: enuneration val ue="i nstance"/ >
<xsd: enunerati on val ue="none"/ >
</xsd:restriction>

</ xsd: si npl eType>
</ xsd: uni on>
</ xsd: si npl eType>
</ xsd: attri bute>
</ xsd: conpl exType>
</ xsd: el emrent >
<xsd:attributeG oup nane="1inkingAttributes">
<xsd:attribute ref="xlink:type" default="sinple"/>
<xsd:attribute ref="xlink:href"/>
<xsd:attribute name="href" type="xsd:anyURl " use="prohibited"/>
</ xsd: attributeG oup>
<xsd: el ement nane="bi nd">
<xsd: annot ati on>

<xsd: docunent ati on>Definition of bind container.</xsd: docunentati on>

</ xsd: annot ati on>

<xsd: conpl exType>
<xsd: sequence m nCccurs="0" maxQccur s="unbounded" >

<xsd: el ement ref="xforms: bind"/>

</ xsd: sequence>
<xsd:attributeGoup ref="xfornms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|ID' use="optional"/>
<xsd:attribute nane="ref" type="xsd:string" use="optional"/>
<xsd:attribute nane="type" type="xsd: QName" use="optional "/>

<xsd:attribute name="readOnly" type="xsd:string" use="optional"/>
<xsd:attribute nane="required" type="xsd:string" use="optional"/>
<xsd:attribute name="rel evant" type="xsd:string" use="optional"/>
<xsd:attribute name="isValid" type="xsd:string" use="optional"/>
<xsd:attribute name="cal cul ate" type="xsd:string" use="optional"/>

<xsd: attribute nane="nmaxCccurs" use="optional">
<xsd: si npl eType>
<xsd: uni on nmenber Types="xsd: nonNegat i vel nt eger" >
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="unbounded"/ >
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: uni on>
</ xsd: si npl eType>
</xsd:attribute>
<xsd: attribute nane="mi nCccurs" type="xsd: nonNegati vel nt eger
</ xsd: conpl exType>
</ xsd: el emrent >
<l--
User Interface formcontrols
-->
<xsd: group nane="fornControl s">
<xsd: choi ce>
<xsd: el ement ref="xfornms:input"/>
<xsd: el ement ref="xforns:textarea"/>
<xsd: el ement ref="xforns:secret"/>
<xsd: el ement ref="xforms: output"/>
<xsd: el ement ref="xfornms: upl oad"/>
<xsd: el ement ref="xforns:sel ect One"/>
<xsd: el ement ref="xforns: sel ect Many"/ >
<xsd: el ement ref="xforns:range"/>
<xsd: el ement ref="xforns:submt"/>
<xsd: el ement ref="xforns: button"/>
</ xsd: choi ce>
</ xsd: gr oup>
<xsd: attri buteG oup nanme="bi ndFirstAttri butes">

use="optional "/ >

<xsd:attribute nane="nodel " type="xsd:|DREF" use="optional"/>
<xsd:attribute nane="ref" type="xsd:string" use="optional"/>
<xsd: attribute nane="hi nd" type="xsd:|DREF" use="optional"/>
</ xsd: attri buteG oup>
<xsd: attributeGoup nane="hi ndAI | Attri butes">
<xsd: attribute nane="nodel " type="xsd:|DREF" use="optional"/>
<xsd:attribute nane="nodeset" type="xsd:string" use="optional"/>
<xsd:attribute nane="bi nd" type="xsd:|DREF" use="optional "/>
</ xsd: attributeG oup>
<xsd: attributeG oup nane="comonUl Attri butes">
<xsd:attribute ref="xm:Ilang" type="xsd:|anguage" use="optional"/>
<xsd: attribute name="cl ass" type="xsd:string" use="optional"/>
<xsd:attribute nane="accessKey" type="xsd:string" use="optional"/>
<xsd: attribute name="navl ndex" type="xsd: nonNegativel nteger" use="optional"/>
</ xsd: attri buteG oup>
<xsd: el enent nane="caption">
<xsd: conpl exType m xed="true">
<xsd: sequence>
<xsd: any nanespace="##any"/ >
</ xsd: sequence>
<xsd:attributeGoup ref="xfornms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|ID' use="optional"/>
<xsd:attributeGoup ref="xforms: bindFirstAttributes"/>
<xsd: attributeGoup ref="xforms:comonU Attri butes"/>
<xsd:attributeGoup ref="xforms:|inkingAttributes"/>
</ xsd: conpl exType>
</ xsd: el emrent >
<xsd: el ement nane="hint">
<xsd: conpl exType m xed="true">
<xsd: sequence>
<xsd: any nanespace="##any"/ >
</ xsd: sequence>
<xsd: attributeG oup ref="xforms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|ID' use="optional"/>
<xsd:attributeGoup ref="xforms: bindFirstAttributes"/>
<xsd:attributeGoup ref="xforms: commonU Attributes"/>
<xsd:attributeGoup ref="xforms:linkingAttributes"/>
</ xsd: conpl exType>
</ xsd: el erment >
<xsd: el ement nane="hel p">
<xsd: conpl exType m xed="true">
<xsd: sequence>
<xsd: any nanespace="##any"/ >
</ xsd: sequence>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nanme="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforms: bindFirstAttributes"/>
<xsd:attributeGoup ref="xforms: commonU Attributes"/>
<xsd:attributeGoup ref="xforms:|inkingAttributes"/>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nane="al ert">
<xsd: conpl exType m xed="true">
<xsd: sequence>
<xsd: any nanespace="##any"/>
</ xsd: sequence>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforns: bindFirstAttributes"/>
<xsd:attri buteGoup ref="xfornms: commonU Attributes"/>

<xsd:attributeGoup ref="xforms:|inkingAttributes"/>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nane="extensi on">
<xsd: conpl exType>
<xsd: sequence>
<xsd: any nanmespace="##ot her"/ >
</ xsd: sequence>
<xsd:attributeGoup ref="xfornms: horzAttrs"/>
</ xsd: conpl exType>
</ xsd: el enment >
<xsd: el ement nane="choi ces">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="xforns:caption" mnCccurs="0"/>
<xsd: sequence maxQccur s="unbounded" >
<xsd: choi ce>
<xsd: el ement ref="xforns: choi ces"/>
<xsd: el ement ref="xforms:itenl/>
<xsd: el ement ref="xforns:itenset"/>
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: sequence>
<xsd: attributeGoup ref="xforms: horzAttrs"/>
<xsd:attribute name="id" type="xsd:I1D'/>
</ xsd: conpl exType>
</ xsd: el emrent >
<xsd: el ement nane="val ue">
<xsd: conpl exType m xed="true">
<xsd: sequence>
<xsd: any nanespace="##any"/ >
</ xsd: sequence>
<xsd: attributeG oup ref="xforms: horzAttrs"/>
<xsd:attributeGoup ref="xforms: bindFirstAttributes"/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane="itenl >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="xforns:caption"/>
<xsd: el ement ref="xforns:val ue"/>
<xsd: group ref="xforns: optional U Children" m nCccurs="0"
</ xsd: sequence>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane="itenset">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="xforns:caption"/>
<xsd: el ement ref="xforns:val ue"/>
<xsd: group ref="xforns: optional U Children" ninGCccurs="0"
</ xsd: sequence>
<xsd:attributeGoup ref="xforms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforns: bindAI | Attributes"/>
</ xsd: conpl exType>
</ xsd: el emrent >
<xsd: group name="optional U Chil dren">

maxCQccur s="unbounded"/ >

maxCQccur s="unbounded"/ >

<xsd: sequence>
<xsd: choi ce>
<xsd: el enent ref="xforns: hel p"/>
<xsd: el ement ref="xforms: hint"/>
<xsd: el ement ref="xforns:alert"/>
<xsd: group ref="xforns:acti onG oup"/>
<xsd: el ement ref="xforns: extension"/>
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: gr oup>
<xsd: el ement nanme="i nput ">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="xforns:caption"/>
<xsd: group ref="xforns:optional U Children" m nCccurs="0" nmaxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforns: bindFirstAttributes"/>
<xsd: attribute nane="i nput Mode" type="xsd:string" use="optional"/>
<xsd:attributeGoup ref="xforms: commonU Attributes"/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nanme="t extarea">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="xforns:caption"/>
<xsd: group ref="xforns:optional U Children" m nCccurs="0" nmaxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|ID' use="optional"/>
<xsd:attributeGoup ref="xforns: bindFirstAttributes"/>
<xsd: attribute name="i nput Mode" type="xsd:string" use="optional"/>
<xsd:attri buteGoup ref="xforms: commonU Attributes"/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement name="secret">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="xforns:caption"/>
<xsd: group ref="xforns:optional U Children" m nCccurs="0" nmaxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attributeGoup ref="xfornms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:ID'/>
<xsd:attributeGoup ref="xforns: bindFirstAttributes"/>
<xsd: attribute nanme="i nput Mode" type="xsd:string" use="optional"/>
<xsd:attributeGoup ref="xfornms: commonU Attributes"/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nanme="upl oad" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="xforns:caption"/>
<xsd: group ref="xforns:optional U Children" m nCccurs="0" nmaxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attributeGoup ref="xfornms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforns: bindFirstAttributes"/>
<xsd:attri buteGoup ref="xforns: commonU Attributes"/>
<xsd: attribute nane="nmedi aType" type="xsd:string" use="optional"/>

</ xsd: conpl exType>
</ xsd: el emrent >
<xsd: group nane="li st Choi ces" >
<xsd: sequence>
<xsd: choi ce>
<xsd: el ement ref="xforms:itenl/>
<xsd: el ement ref="xforns:itenset"/>
<xsd: el ement ref="xforns:choices"/>
</ xsd: choi ce>
</ xsd: sequence>
</ xsd: gr oup>
<xsd: el emrent nane="sel ect One" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enment ref="xforns:caption"/>
<xsd: group ref="xforns:listChoices" nmaxQccurs="unbounded"/ >

<xsd: group ref="xforns:optional U Children" m nCccurs="0" nmaxQccur s="unbounded"/ >

</ xsd: sequence>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforms: bindFirstAttributes"/>
<xsd:attributeGoup ref="xforms: commonU Attributes"/>
<xsd:attribute nane="selectU " use="optional ">
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enuneration val ue="radi 0"/ >
<xsd: enuner ati on val ue="checkbox"/ >
<xsd: enuneration val ue="menu"/>
<xsd: enuneration val ue="1i st box"/>
<xsd: enunerati on val ue="conbo"/ >
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd:attribute>
<xsd:attribute nane="sel ecti on” use="optional" default="cl osed">
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="open"/>
<xsd: enumner ati on val ue="cl osed"/ >
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd:attribute>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el enrent nane="sel ect Many" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="xforns:caption"/>
<xsd: group ref="xforns:|istChoi ces" maxQccurs="unbounded"/ >

<xsd: group ref="xforns:optional U Children" m nCccurs="0" maxQccur s="unbounded"/ >

</ xsd: sequence>
<xsd: attributeGoup ref="xforms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforms: bindFirstAttributes"/>
<xsd: attributeGoup ref="xfornms:comonU Attri butes"/>
<xsd: attribute name="selectU " use="optional ">
<xsd: si npl eType>
<xsd:restriction base="xsd:string">

<xsd: enuneration val ue="radi 0"/ >

<xsd: enuner ati on val ue="checkbox"/ >

<xsd: enuner ati on val ue="nenu"/>

<xsd: enuneration val ue="1istbox"/>
<xsd: enumer ati on val ue="conbo"/ >
</ xsd:restriction>
</ xsd: si npl eType>
</xsd:attribute>
<xsd: attribute nane="sel ecti on" use="optional" default="cl osed">
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enumer ati on val ue="open"/>
<xsd: enumer ati on val ue="cl osed"/ >
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd:attribute>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el enrent nane="range">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref="xforns:caption"/>
<xsd: group ref="xforns:optional U Children" m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attributeGoup ref="xfornms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforms: bindFirstAttributes"/>
<xsd: attributeGoup ref="xfornms:comonU Attri butes"/>
<xsd:attribute name="start" type="xsd:string" use="optional"/>
<xsd: attribute name="end" type="xsd:string" use="optional"/>
<xsd: attribute nane="stepSi ze" type="xsd:string" use="optional"/>
</ xsd: conpl exType>
</ xsd: el emrent >
<xsd: el ement name="button">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="xforns:caption"/>
<xsd: group ref="xforns:optional U Children" m nCccurs="0" maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attributeGoup ref="xforms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd: attributeGoup ref="xfornms:comonU Attributes"/>
</ xsd: conpl exType>
</ xsd: el emrent >
<xsd: el ement nane="out put">
<xsd: conpl exType>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|ID' use="optional"/>
<xsd:attribute nane="ref" type="xsd:string" use="optional"/>
<xsd:attribute nane="nodel " type="xsd:string" use="optional"/>
<xsd:attribute nane="format" type="xsd:string" use="optional"/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement name="submt">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="xforns:caption"/>
<xsd: group ref="xforns:optional U Children" m nCccurs="0" nmaxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|ID' use="optional"/>
<xsd:attribute nanme="submtlnfo" type="xsd:|DREF" use="required"/>
</ xsd: conpl exType>

</ xsd: el ement >

<l --

XFornms Acti
-->

ons

<xsd: attributeG oup nane="XM.Events">
<xsd:attribute ref="ev:event"/>
<xsd:attribute ref="ev:observer"/>
<xsd:attribute ref="ev:target"/>
<xsd:attribute ref="ev: handler"/>
<xsd:attribute ref="ev:phase"/>
<xsd:attribute ref="ev:propagate"/>
<xsd:attribute ref="ev:defaultAction"/>

</ xsd: attributeG oup>

<xsd: group nanme="acti onG oup">
<xsd: choi ce>

<xsd:
<xsd:

el ement ref="xforns:action"/>
group ref="xforns:actions"/>

</ xsd: choi ce>

</ xsd: gr oup>

<xsd: el emrent nane="action">
<xsd: conpl exType>

<xsd:

sequence maxQccur s="unbounded" >

<xsd: group ref="xforns:actions"/>
</ xsd: sequence>

<xsd:
<xsd:
<xsd:

attributeG oup ref="xforms: horzAttrs"/>
attribute nane="id" type="xsd: | D' use="optional"/>
attributeG oup ref="xfornms: XM_.Events"/>

</ xsd: conpl exType>

</ xsd: el emrent >

<xsd: group nanme="actions">
<xsd: choi ce>

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

el ement ref="xforns:di spatch"/>

el enent ref="xforms:refresh"/>

el enent ref="xforms:revalidate"/>

el enent ref="xforms:recal cul ate"/>

el enment ref="xfornms: set Focus"/>

el enent ref="xforms:| oadURlI "/ >

el ement ref="xforns:setVal ue"/ >

el ement ref="xfornms: subm tlnstance"/>
el ement ref="xforns:resetlnstance"/>
el ement ref="xforns:insert"/>

el ement ref="xforns:delete"/>

el ement ref="xforns: set Repeat Cursor"/ >
el ement ref="xforns:toggle"/>

el ement ref="xforns:script"/>

el ement ref="xforns: nessage"/ >

</ xsd: choi ce>

</ xsd: gr oup>

<xsd: el ement nane="di spatch">
<xsd: conpl exType>

<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

attributeGoup ref="xformns: horzAttrs"/>

attribute nane="id" type="xsd:| D' use="optional"/>

attribute nane="nanme" type="xsd: NMTOKEN' use="required"/>

attribute nane="target" type="xsd:|DREF" use="required"/>

attribute nane="bubbl es" type="xsd: bool ean" use="optional" default="true"/>
attribute nane="cancel abl e" type="xsd: bool ean" use="optional" default="true"/>
attributeG oup ref="xfornms: XM_Events"/ >

</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el enent nane="refresh">

<xsd: conpl exType>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xfornms: XM_.Events"/>
</ xsd: conpl exType>
</ xsd: el emrent >
<xsd: el ement nane="recal cul ate">
<xsd: conpl exType>
<xsd:attributeGoup ref="xfornms: horzAttrs"/>
<xsd:attribute name="id" type="xsd:| D' use="optional"/>
<xsd: attributeGoup ref="xforms: XM_.Events"/>
</ xsd: conpl exType>
</ xsd: el emrent >
<xsd: el ement nane="reval i date">
<xsd: conpl exType>
<xsd:attributeGoup ref="xfornms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xfornms: XM_.Events"/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nanme="set Focus" >
<xsd: conpl exType>
<xsd:attributeGoup ref="xforms: horzAttrs"/>
<xsd:attribute name="id" type="xsd:| D' use="optional"/>
<xsd:attribute nane="idref" type="xsd:|DREF" use="required"/>
<xsd: attributeGoup ref="xfornms: XM_.Events"/>
</ xsd: conpl exType>
</ xsd: el emrent >
<xsd: el ement nane="I| oadURl ">
<xsd: conpl exType>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforms: bindFirstAttri butes"/>
<xsd:attribute ref="xlink:href" use="required"/>
<xsd:attribute ref="xlink:show' use="optional"/>
<xsd:attributeGoup ref="xfornms: XM_Events"/>
</ xsd: conpl exType>
</ xsd: el enment >
<xsd: el ement nane="set Val ue">
<xsd: conpl exType>
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: string">
<xsd:attributeGoup ref="xfornms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforns: bindFirstAttributes"/>
<xsd: attri bute nane="val ue" type="xsd:string"/>
<xsd:attributeG oup ref="xfornms: XM_.Events"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nanme="subnitl| nstance">
<xsd: conpl exType>
<xsd:attributeGoup ref="xforms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attribute nane="submitlnfo" type="xsd:|DREF" use="optional"/>
<xsd:attributeGoup ref="xfornms: XM_.Events"/>
</ xsd: conpl exType>
</ xsd: el emrent >
<xsd: el ement nane="resetl| nstance">

<xsd: conpl exType>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd: attributeGoup ref="xfornms: XM_.Events"/ >
<xsd: attribute nane="nodel " type="xsd: | DREF"/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane="insert">
<xsd: conpl exType>
<xsd:attributeGoup ref="xforms: horzAttrs"/>
<xsd:attribute name="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforms: bindAl | Attributes"/>
<xsd:attribute nane="at" type="xsd:string" use="required"/>
<xsd:attribute nane="position" use="required">
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enumner ati on val ue="before"/>
<xsd: enuneration value="after"/>
</ xsd:restriction>
</ xsd: si npl eType>
</xsd:attribute>
<xsd:attributeG oup ref="xforms: XM_.Events"/>
</ xsd: conpl exType>
</ xsd: el enment >
<xsd: el ement nanme="del ete">
<xsd: conpl exType>
<xsd:attributeGoup ref="xforms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforns: bi ndAlI | Attributes"/>
<xsd:attribute nane="at" type="xsd:string" use="required"/>
<xsd:attributeGoup ref="xfornms: XM_.Events"/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nanme="set Repeat Cur sor" >
<xsd: conpl exType>
<xsd:attributeGoup ref="xforms: horzAttrs"/>
<xsd:attribute name="id" type="xsd:| D' use="optional"/>
<xsd:attribute nane="repeat” type="xsd:|DREF" use="required"/>
<xsd:attribute nane="cursor" type="xsd:string" use="required"/>
<xsd: attributeGoup ref="xfornms: XM_.Events"/>
</ xsd: conpl exType>
</ xsd: el emrent >
<xsd: el enent nane="t oggl e">
<xsd: conpl exType>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nanme="id" type="xsd:|D' use="optional"/>
<xsd:attribute nane="case" type="xsd:|DREF" use="required"/>
<xsd:attributeG oup ref="xfornms: XM_.Events"/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nanme="script">
<xsd: conpl exType>
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: string">
<xsd:attributeGoup ref="xforms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attribute nane="type" type="xsd:string" use="required"/>
<xsd:attribute nane="rol e" type="xsd:string" use="optional"/>
<xsd: attributeGoup ref="xfornms: XM_.Events"/>
</ xsd: ext ensi on>

</ xsd: si npl eCont ent >
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el enent nane="nessage" >
<xsd: conpl exType>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|ID' use="optional"/>
<xsd:attributeGoup ref="xforms: bindFirstAttributes"/>
<xsd:attribute nane="level" type="xsd:string" use="required"/>
<xsd: attributeGoup ref="xfornms: XM_.Events"/>
</ xsd: conpl exType>
</ xsd: el enment >
<l--
Advanced User Interface
-->
<xsd: el enrent nane="group">
<xsd: conpl exType>
<xsd: sequence maxQccur s="unbounded" >
<xsd: el enent ref="xforns:caption" mnCccurs="0"/>
<xsd: any nanespace="##any"/ >
</ xsd: sequence>
<xsd:attributeGoup ref="xfornms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforms: bindFirstAttributes"/>
<xsd: attributeGoup ref="xfornms:comonU Attri butes"/>
</ xsd: conpl exType>
</ xsd: el emrent >
<xsd: el ement nanme="sw tch">
<xsd: conpl exType>
<xsd: sequence maxQccur s="unbounded" >
<xsd: el ement ref="xforms: case"/>
</ xsd: sequence>
<xsd: attributeG oup ref="xforms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|I D' use="required"/>
<xsd:attributeGoup ref="xforms: bindFirstAttributes"/>
<xsd:attri buteGoup ref="xforms: commonU Attributes"/>
<xsd:attribute name="default" type="xsd:|DREF" use="optional"/>
</ xsd: conpl exType>
</ xsd: el erment >
<xsd: el ement nane="case">
<xsd: conpl exType>
<xsd: sequence maxQCccur s="unbounded" >
<xsd: any nanespace="##any"/ >
</ xsd: sequence>
<xsd: attribute nane="sel ected" type="xsd: bool ean" use="optional"/>
<xsd:attributeGoup ref="xforns: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|ID' use="required"/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nanme="repeat ">
<xsd: conpl exType>
<xsd: sequence maxQCccur s="unbounded" >
<xsd: any nanespace="##any"/>
</ xsd: sequence>
<xsd:attributeGoup ref="xforms: horzAttrs"/>
<xsd:attribute nane="id" type="xsd:|D' use="optional"/>
<xsd:attributeGoup ref="xforns: bindAl | Attributes"/>
<xsd:attri buteGoup ref="xforns: conmmonU Attributes"/>
<xsd:attribute nane="startl ndex" type="xsd: positivelnteger" use="optional"/>
<xsd:attribute nane="nunber" type="xsd: nonNegativel nteger" use="optional"/>

</ xsd: conpl exType>
</ xsd: el emrent >
<l--
New si npl eTypes
-->
<xsd: si npl eType name="QNaneLi st" >
<xsd:li1st itemlype="xsd: QNanme"/ >
</ xsd: si npl eType>
<xsd: si npl eType nanme=" QNaneBut Not NCNAME" >
<xsd:restriction base="xsd: QNane" >
<xsd:pattern value="[":]+: [":]+"/>
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: si npl eType name="listltent>
<xsd:restriction base="xsd:string">
<xsd: pattern val ue="/S+"/>
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: si npl eType name="listltens">
<xsd:li1st itemlype="xforms:listlten/>
</ xsd: si npl eType>
</ xsd: schema>

A.1 Schema for XLink

This schema is not normative with respect to XLink, athough it is considered a normative part of the XForms
definition.

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema t arget Nanespace="http://ww. w3. or g/ 1999/ x| i nk"
xm ns: xI ="http://ww. w3. org/ 1999/ x| i nk"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
el enent For nDef aul t ="qual i fi ed" attri buteFornDefaul t="unqualified">
<I--
This schena is in no way normative for XLink; it functions only as a part of the
Schenma for XForns to all ow proper assessment of XFornms docunents and fragments.

See the XForns specification for details.
-->
<xsd:attribute nane="href" type="xsd:anyURl"/>
<xsd:attribute nane="type" type="xsd:string"/>
<xsd: attribute name="rol e" type="xsd:anyURl "/>
<xsd:attribute nane="arcrol e" type="xsd: anyURl "/ >
<xsd:attribute nane="title" type="xsd:string"/>
<xsd: attribute nanme="actuate">
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enurer ati on val ue="onLoad"/ >
<xsd: enuner ati on val ue="onRequest"/ >
<xsd: enuner ati on val ue="ot her"/>
<xsd: enuner ati on val ue="none"/ >
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: attri bute>
<xsd: attribute name="show'>
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="new'/ >
<xsd: enunerati on val ue="repl ace"/ >
<xsd: enurer ati on val ue="enbed"/ >

<xsd: enunerati on val ue="ot her"/>
<xsd: enuner ati on val ue="none"/ >
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: attribute>
<xsd: attri bute nane="|abel " type="xsd: NCNane"/ >
<xsd:attribute nane="from' type="xsd: NCNane"/ >
<xsd:attribute nane="to" type="xsd: NCNanme"/>
</ xsd: schema>

A.2 Schema for XML Events

This schema is not normative with respect to XML Events, although it is considered a normative part of the XForms
definition.

<?xm version="1. 0" encodi ng="UTF-8""?>
<l-- edited with XM_ Spy v4.0.1 U (http://ww. xm spy. com) by M cah Dubi nko (XForns WG -->
<xsd: schema t ar get Nanespace="http://ww. w3. or g/ 2001/ xm - event s"
xm ns: ev="http://ww. w3. org/ 2001/ xm - event s"
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema"
attri but eFor nDef aul t ="unqual i fi ed">
<I--
This schena is in no way normative for XML Events; it functions only as a part of the
Schema for XForns to all ow proper assessment of XForns docunents and fragments.

See the XForns specification for details.
-->
<xsd:attri bute nanme="event" type="xsd: NMTOKEN'/ >
<xsd: attribute name="observer" type="xsd:|DREF"/>
<xsd:attribute nane="target" type="xsd:|DREF"/>
<xsd:attribute nane="handl er" type="xsd:anyURl "/ >
<xsd: attribute name="phase">
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="capture"/>
<xsd: enuner ati on val ue="defaul t"/>
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: attribute>
<xsd: attri bute nane="propagate">
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enumer ati on val ue="stop"/>
<xsd: enuner ati on val ue="conti nue"/ >
</xsd:restriction>
</ xsd: si npl eType>
</xsd:attribute>
<xsd: attribute nane="defaul t Acti on">
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="cancel "/ >
<xsd: enuner ati on val ue="perforn/>
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: attri bute>
</ xsd: schema>

B References

B.1 Normative References

RFC 2388
RFC 2388: Returning Values from Forms. multipart/form-data, L. Masinter, 1998. Available at:
http://www.ietf.org/rfc/rfc2388.txt.

XForms Req
XForms Requirements, Micah Dubinko, Dave Raggett, Sebastian Schnitzenbaumer, Malte Wedel, 2001. W3C
Working Draft; available at: http://www.w3.0rg/TR/xhtml-forms-req.

XML Events
XML Events - An events syntax for XML , Steven Pemberton, T. V. Raman, Shane P. McCarron, 2001. W3C
Last Call Working Draft available at: http://www.w3.org/ TR/xml-eventd.

XLink
XML Linking Language (XLink) Version 1.0, Steve DeRose, Eve Maler, David Orchard, 2001. W3C
Recommendation available at: http://www.w3.org/ TR/xlink/.

XML 1.0
Extensible Markup Language (XML) 1.0 (Second Edition), Tim Bray, Jean Paoli, C. M. Sperberg-McQueen,
Eve Maler, 2000. W3C Recommendation: available at: http://www.w3.org/TR/REC-xml

XML Names
Namespaces in XML, Tim Bray, Dave Hollander, Andrew Layman, 1999. W3C Recommendation available at:
http://www.w3.0rg/ TR/REC-xml-names.

XPath 1.0
XML Path Language (XPath) Version 1.0, James Clark, Steve DeRose, 1999. W3C Recommendation available
at: http://lwww.w3.0rg/TR/xpath.

XML Schemapart 1
XML Schema Part 1: Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn,
2001. W3C Recommendation available at: http://www.w3.org/TR/xmlschema-1/.

XML Schemapart 2
XML Schema Part 2: Datatypes, Paul V. Biron, Ashok Malhotra, 2001. W3C Recommendation available at:
http://www.w3.0rg/TR/xmlschema-2/.

XSLT
XS Transformations (XSLT) Version 1.0, James Clark, 1999. W3C Recommendation available at:
http://www.w3.0rg/TR/xslt.

B.2 Informative References

AUI97
Auditory User Interfaces--Toward The Speaking Computer , T. V. Raman, Kluwer Academic Publishers,
1997. ISBN:0-7923-9984-6.

CSs2
Cascading Style Shests, level 2 (CSS2) Specification, Bert Bos, Hakon Wium Lie, Chris Lilley, lan Jacobs,
1998. W3C Recommendation available at: http://www.w3.org/TR/REC-CSS2.

DOM2 Events
Document Object Model (DOM) Level 2 Events Specification, Tom Pixley, 2000. W3C Recommendation
available at: http://www.w3.0rg/TR/DOM-Level-2-Eventd.

DDJ-ArrayDoubling
Resizable Arrays, Heaps and Hash Tables, John Boyer, Doctor Dobb's Journal, CMP Media LLC, January
1998 Issue.

FIMS
Form Interface Management System, ISO/IEC DIS 11730, 1992. available at:
http://gatekeeper.research.compag.com/pub/standards/sgl/fims.txt

P3P 1.0
The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, Lorrie Cranor, Marc Langheinrich, Massimo
Marchiori, Martin Presler-Marshall, Joseph Reagle, 2001. W3C Last Call Working Draft available at:

http://www.ietf.org/rfc/rfc2388.txt
http://www.ietf.org/rfc/rfc2388.txt
http://www.ietf.org/rfc/rfc2388.txt
http://www.ietf.org/rfc/rfc2388.txt
http://www.ietf.org/rfc/rfc2388.txt
http://www.ietf.org/rfc/rfc2388.txt
http://www.ietf.org/rfc/rfc2388.txt
http://www.w3.org/TR/xhtml-forms-req
http://www.w3.org/TR/xhtml-forms-req
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/DOM-Level-2-Events/
http://gatekeeper.research.compaq.com/pub/standards/sql/fims.txt
http://gatekeeper.research.compaq.com/pub/standards/sql/fims.txt
http://gatekeeper.research.compaq.com/pub/standards/sql/fims.txt
http://gatekeeper.research.compaq.com/pub/standards/sql/fims.txt
http://www.w3.org/TR/P3P/
http://www.w3.org/TR/P3P/
http://www.w3.org/TR/P3P/
http://www.w3.org/TR/P3P/
http://www.w3.org/TR/P3P/
http://www.w3.org/TR/P3P/
http://www.w3.org/TR/P3P/
http://www.w3.org/TR/P3P/

http://www.w3.org/ TR/P3P/.

XHTML 1.0
XHTML 1.0: The Extensible Hyper Text Markup Language - A Reformulation of HTML 4 in XML 1.0 , Steven
Pemberton, et al., 2000. W3C Recommendation available at: http://www.w3.0rg/TR/xhtml 1.

XML Schemapart O
XML Shema Part 0: Primer, David C. Fallside, 2001. W3C Recommendation available at:
http://mww.w3.org/TR/xmlschema-0/.

C Recalculation Sequence Algorithm

XForms Processors are free (and encouraged) to skip or optimize any steps in this algorithm, as long as the end
result is the same. The XForms recalculation algorithm considers model items and model item properties to be
verticesin adirected graph. Edges between the vertices represent computational dependencies between vertices.

Following is the default handling for a recal cul at e action. Action recal cul ate is defined in 10.3
recalculate.

1. A master dependency directed graph is created as detailed in C.1 Details on Creating the Master Dependency
Directed Graph.

2. To provide consistent behavior, implementations must reduce the number of vertices to be processed by
computing a pertinent dependency subgraph consisting only of vertices and edges that are reachable from nodes
that require recomputation. This is detailed in C.2 Details on Creating the Pertinent Dependency Subgraph.
Note that on afirst recomputation (such as on form load), the pertinent dependency subgraph will be the same as
the master dependency directed graph.

3. A topologica sort is performed on the vertices of the pertinent dependency subgraph, resulting in an order of
evaluation in which each vertex is evaluated only after those vertices on which it depends and before al vertices
which depend on it. Thisis detailed in C.3 Details on Computing Individual Vertices.

4. Ther ecal cul at e process completes.
C.1 Details on Creating the Master Dependency Directed Graph

The master dependency directed graph can be considered an array with one record for each vertex, each having the
following fields:

InstanceNode: areference to the associated instance data node

type: indicates the aspect of the instance node represented by the vertex (the text content or amodel item property
such as readOnly or required)

depList: alist of vertices that refer to this vertex

inDegr ee: the number of vertices on which this vertex depends

visited: aflag used to ensure vertices are not added to a subgraph multiple times

index: an association between vertices in the master dependency directed graph and a subgraph

The deplLi st for each vertex is assigned to be the referenced XML nodes of a given instance node, which are
obtained by parsing the computed expression in the node (e.g., the calculate, relevant, readOnly, or required
property). Any expression violating any Binding Expression Constraint causes a fatal exception, terminating the
recal cul at e process.

ThedeplLi st for avertex v is assigned to be the vertices other than v whose computational expressions reference
v (described below). Vertex v is excluded from its own depLi st to allow self-references to occur without causing
acircular reference exception.

A computational expression appearing in acal cul at e attribute controls the text content (value) of one or more
instance nodes. A vertex exists for each instance node to represent the expression in the context of the node.

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

Likewise, computational expressions for model item properties such asr eadOnl y and r equi r ed are applied to
one or more instance nodes, and vertices are created to represent such expressions in the context of each applicable
node. The computational expression of each vertex must be examined to determine the XML nodes to which it
refers. Any expression violating any Binding Expression Constraint causes a fatal exception, terminating the
recal cul ate process. A computation expression refers to a vertex v if a subexpression indicates the
InstanceNode for v and v represents the instance node text content (its value). In this version of XForms, model
item propertiessuch asr eadOnl y and r equi r ed cannot be referenced in an expression.

C.2 Details on Creating the Pertinent Dependency Subgraph

If al calculations must be performed, which is the case on form load, then the pertinent dependency subgraph is
simply a duplicate of the master dependency directed graph. If the recalculation algorithm is invoked with alist of
changed instance data nodes since the last recalculation, then the pertinent dependency subgraph is obtained by
exploring the paths of edges and vertices in the computational dependency directed graph that are reachable from
each vertex in the change list. The method of path exploration can be depth first search, a suitable version of which
appears in the pseudo-code below.

Example: Sample Algorithm to Create the Pertinent Dependency Subgraph

This algorithm creates a pertinent dependency subgraph S from a list of changed instance data nodes
L<sub>c</ sub>. Variables such asv and wrepresent vertices in the master dependency directed graph. The same
variables ending with S indicate vertices in the pertinent dependency subgraph S.

/1 Use depth-first search to explore master digraph subtrees rooted at
/1 each changed vertex. A 'visited flag is used to stop exploration
/1 at the boundaries of previously explored subtrees (because subtrees
/1 can overlap in directed graphs).

for each vertex r in Lc

f ris not visited

Push the pair (NIL, r) onto a stack
\{Nhile the stack is not enpty
(v, w) = pop dependency pair from stack
if wis not visited
{
Set the visited flag of wto true
Create a vertex wSin Sto represent w
Set the index of w equal to the array |ocation of wS
Set the index of wS equal to the array location of w
Set the I nstanceNode of wS equal to the InstanceNode of w
Set the type of wS equal to the type of w
For each dependency node x of w
Push the pair (w, x) onto the stack

else btain WS fromindex of w
if vis not NIL

{
otain vS fromindex of v
Add dependency node for wS to vS
I ncrenment inDegree of wS

}

}
}

/1 Now clear the visited flags set in the | oop above

for each vertex vSin S

otain v fromindex of vS
Assign false to the visited flag of v

Note that the number of vertices and dependency nodes in the pertinent dependency subgraph is not known
beforehand, but a method such as array doubling (see [DDJ-ArrayDoubling]) can be used to ensure that building the
subgraph is performed in time linear in the size of S.

C.3 Details on Computing Individual Vertices

The following steps process vertices, resulting in arecalculated form:

1. A vertex with inDegree of 0 is selected for evaluation and removed from the pertinent dependency subgraph. In
the case where more than one vertex has inDegree zero, no particular ordering is specified. If the pertinent
dependency subgraph contains vertices, but none have an inDegree of 0, then the calculation structure of the form
has aloop, and afatal exception must be thrown, terminating the recal culate event.

2. If the vertex corresponds to a computed item, computed expressions are evaluated as follows:

1. cal cul at e: If the value of the model item changes, the corresponding instance data is updated and the dirty
flagis set.

2. rel evant,readOnl y, required,i sValid: If any or al of these computed properties change, the new
settings are immediately placed into effect for associated form controls.

3. For each vertex inthe depLi st of the removed vertex, decrement the inDegree by 1.

4. If no vertices remain in the pertinent dependency subgraph, then the calculation has successfully completed.
Otherwise, repeat this sequence from step 1.

C.4 Example of Calculation Processing

For example, consider six verticesa, b, v, w, X, andy. Let a and b represent the text content of instance nodes that
will be set by a binding from user input controls. Let v and w be vertices representing the calculated value and the
validity property of athird instance node c. These vertices would result from abi nd element B with cal cul at e
andi sVal i d attributes and ar ef attribute that indicates c. Suppose that the value of ¢ is the product of a and b
and that the value is only valid if it does not exceed 100. Likewise, suppose x and y are vertices representing the
calculated value and the validity property of a fourth instance node d. Let the value of d be the sum of a and b, and
let d be valid if the value does not exceed 20. The figure below depicts the dependency digraph for this example.

Vertices a and b have edges leading to v and x because these vertices represent the calculate expressions of ¢ and
d, which reference a and b to compute their product and sum, respectively. Similarly, v and x have directed edges
towandy, respectively, because wand y represent the isValid expressions of ¢ and d, which reference the values of
¢ and d to compare them with boundary values.

If a and b areinitialy egual to 10, and the user changes a to 11, then it is necessary to first recalculate v (the value
of ¢) then recalculate w (the validity property of the value of c). Likewise, x (the value of d) must be recalculated
before recalculating y (the validity property of the value of d). In both cases, the validity of the value does not
change to f al se until after the new product and sum are computed based on the change to a. However, there are
no interdependencies between v and X, so the product and sum could be computed in either order.

The pertinent subgraph excludes b and only vertex a has in-degree of zero. The vertex a is processed first. It isnot a
computed vertex, so no recalculation occurs on a, but its removal causesv and x to have in-degree zero. Vertex v is
processed second. Its value changes to 121, and its removal drops the in-degree of vertex w to zero. Vertex x is
processed next, changing value to 21. When x is removed, its neighbor y drops to in-degree zero. The fourth and
fifth iterations of this process recalculate the validity of wand y, both of which change to false.

D Input Modes

The attribute i nput Mbde provides a hint to the user agent to select an appropriate input mode for the text input
expected in an associated form control. The input mode may be a keyboard configuration, an input method editor
(also called front end processor) or any other setting affecting input on the device(s) used.

Using i nput Mbde, the author can give hints to the agent that make form input easier for the user. Authors should
providei nput Mode attributes wherever possible, making sure that the values used cover awide range of devices.

D.1i nput Mode Attribute Value Syntax

The value of the i nput Mbde attribute is a white space separated list of tokens. Tokens are either sequences of
alphabetic letters or absolute URIs. The later can be distinguished from the former by noting that absolute URIs
contain a "'. Tokens are case-sensitive. All the tokens consisting of alphabetic letters only are defined in this
specification, in D.3 List of Tokens (or a successor of this specification).

This specification does not define any URIs for use as tokens, but alows others to define such URIs for
extensibility. This may become necessary for devices with input modes that cannot be covered by the tokens
provided here. The URI should dereference to a human-readable description of the input mode associated with the
use of the URI as atoken. This description should describe the input mode indicated by this token, and whether and
how this token modifies other tokens or is modified by other tokens.

D.2 User Agent Behavior

Upon entering an empty form control with an i nput Mode attribute, the user agent should select the input mode
indicated by the i nput Mbde attribute value. User agents should not use the i nput Mode attribute to set the input
mode when entering a form control with text already present. To set the appropriate input mode when entering a
form control that already contains text, user agents should rely on platform-specific conventions.

User agents should make available all the input modes which are supported by the (operating) system/device(s) they
run on/have access to, and which are installed for regular use by the user. Thisistypicaly only a small subset of the
input modes that can be described with the tokens defined here.

The following ssimple algorithm is used to define how user agents match the values of an i nput Mbde attribute to
the input modes they can provide. This algorithm does not have to be implemented directly; user agents just have to
behave as if they used it. The algorithm is not designed to produce "obvious' or "desirable" results for every
possible combination of tokens, but to produce correct behavior for frequent token combinations and predictable
behavior in al cases.

First, each of the input modes available is represented by one or more lists of tokens. An input mode may
correspond to more than one list of tokens; as an example, on a system set up for a Greek user, both "greek upper"
and "user upper" would correspond to the same input mode. No two lists will be the same.

Second, thei nput Mode attribute is scanned from front to back. For each token t inthei nput Mbde attribute, if
in the remaining list of tokens representing available input modes there is any list of tokens that containst , then all
lists of tokens representing available input modes that do not containt are removed. If there is no remaining list of
tokens that containst , thent isignored.

Third, if one or more lists of tokens are left, and they all correspond to the same input mode, then this input mode is
chosen. If no list is left (meaning that there was none at the start) or if the remaining lists correspond to more than
one input mode, then no input mode is chosen.

Example: Assume the list of lists of tokens representing the available input modes is: {"cyrillic upper”, "cyrillic
lower", "cyrillic", "latin", "user upper", "user lower"}, then the following i nput Mode values select the following
input modes: "cyrillic title" selects "cyrillic", "cyrillic lower" selects "cyrillic lower", "lower cyrillic" selects
"cyrillic lower", "latin upper" selects "latin”, but "upper latin" does select "cyrillic upper" or "user upper" if they
correspond to the same input mode, and does not select any input mode if "cyrillic upper" and "user upper" do not
correspond to the same input mode.

D.3 List of Tokens

Tokens defined in this specification are separated into two categories: Script tokens and modifiers. Ini nput Mode
attributes, script tokens should always be listed before modifiers.

D.3.1 Script Tokens

Script tokens provide a general indication the set of characters that is covered by an input mode. In most cases,
script tokens correspond directly to Unicode Scripts (see http://www.unicode.org/Public/UNIDATA/Scripts.txt).
Some tokens correspond to the block names in Java class javalang.Character.UnicodeBlock (see
http://java.sun.com/j2se/1.4/docs/api/javallang/Character.UnicodeBlock.html; see also Unicode Block names at
http://www.unicode.org/Public/lUNIDATA/Blocks.txt). However, this neither means that an input mode hasto allow
input for al the characters in the script or block, nor that an input mode is limited to only characters from that
specific script. As an example, a "latin" keyboard doesn't cover al the characters in the Latin script, and includes
punctuation which is not assigned to the Latin script. The version of the Unicode Standards that these script names
aretaken fromis 3.2.

D.3.2 Modifier Tokens

Modifier tokens can be added to the scripts they apply to more closely specify the kind of characters expected in the
form field. Traditional PC keyboards do not need most modifier tokens (indeed, users on such devices would be
quite confused if the software decided to change case on its own; CAPS lock for upperCase may be an exception).
However, modifier tokens can be very helpful to set input modes for small devices.

D.4 Relationship to XML Schema pattern facets

User agents may use information available in an XML Schema pattern facet to set the input mode. Note that a
pattern facet is a hard restriction on the lexical value of an instance data node, and can specify different restrictions
for different parts of the data item. Attribute i nput Mode is a soft hint about the kinds of characters that the user
may most probably start to input into the form control. Attribute i nput Mbde is provided in addition to pattern
facets for the following reasons:

1. The set of allowable characters specified in a pattern may be so wide that it is not possible to deduce a reasonable
input mode setting. Nevertheless, there frequently is a kind of characters that will be input by the user with high
probability. In such acase, i nput Mbde alowsto set the input mode for the user's convenience.

2. In some cases, it would be possible to derive the input mode setting from the pattern because the set of characters
allowed in the pattern closely corresponds to a set of characters covered by an i nput Mode attribute value.
However, such a derivation would require alot of data and calculations on the user agent.

3. Small devices may leave the checking of patterns to the server, but will easily be able to switch to those input
modes that they support. Being able to make data entry for the user easier is of particular importance on small
devices.

D.5 Examples

This is an example of a form for Japanese address input. It is shown in table form; it will be replaced by actual
syntax in alater version of this specification.

E Complete XForms Examples

This section presents complete X Forms examples.

E.1 XForms In XHTML

<!--8$ld: index-all.fo,v 1.4 2002/01/16 23:32:13 tvraman Exp $-->
<htm xm ns="http://ww.w3. org/ 1999/ xhtm "
xm ns: xfornms="http://ww. w3. org/ 2002/ 01/ xf or ns"
xm ns: xli nk="http://ww. w3. org/ 1999/ x| i nk"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: ny="http://comrerce. exanpl e. com paynent"
xm : [ang="en" >
<head>
<title>XForms in XHTM.</title>

<xf or ns: nodel >
<xforms:instance>

<paynent as="credit" xm ns="http://comerce. exanpl e. conf paynent" >

<cc/ >
<exp/ >
</ payment >
</ xforms:instance>
<xforms: schema xlink: href ="payschema. xsd"/ >
<xforms:subnmitinfo action="http://exanple.conm subnmit" nethod="post"
<xforms: bind ref="ny: paynment/my: cc"
rel evant="../ny: paynment/ @s = 'credit
requi red="true" type="ny:cc"/>
<xforms: bi nd ref="ny: payment/nmy: exp"
rel evant="../ny: paynent/ @s = 'credit
requi red="true" type="xsd: gYear Mont h"/ >

</ xf or ms: nodel >
</ head>
<body>

<group xm ns="http://ww. w3. org/ 2002/ 01/ xf orms" ref="ny: paynent ">
<sel ect One ref="@s" >
<capti on>Sel ect Payment Met hod</caption>
<choi ces>
<itene
<capt i on>Cash</ capti on>
<val ue>cash</ val ue>
</itemp
<itenmp
<capti on>Credit</caption>
<val ue>credi t </ val ue>
<litenp
</ choi ces>
</ sel ect One>

<i nput ref="my:cc">
<caption>Credit Card Nunber</caption>
</i nput >

<i nput ref="ny:exp">
<capti on>Expirati on Date</caption>
</i nput >

<subm t submtlnfo="s00">
<capti on>Subnit Fornx/caption>
</ submt >
</ group>

</ body>

i d="s00"/>

</htm >

E.2 Editing Hierarchical Bookmarks Using XForms

<?xm version="1.0"7?>
<htm
xm ns="http://ww.w3. org/ 1999/ xhtm "
xm ns: xfornms="http://ww.w3. org/ 2002/ 01/ xf or ns"
xm ns: xl i nk="http://ww.w3. org/ 1999/ x| i nk"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schena"
xm ns: ny="http://conmrerce. exanpl e. conf paynent"
xm ns: ev="http://ww. w3. org/ 2001/ xm -events" xnl : 1l ang="en">
<head>
<style type="text/css">
xforms:input.editField {
font-wei ght: bol d; font-size: 20px; wi dt h: 500px}
xforms: capti on. secti onCaption {
font -wei ght: bol d; col or: whi t e; backgr ound- col or: bl ue}
xforms:submit {font-fanmily: Arial; font-size: 20px; font-style: bold; color: red;}
</styl e>
<title>Editing H erarchical Bookmarks Using In An XM. Browser</title>
<xf orns: nodel id="booknmarks">
<!'--The bookmarks instance tree is shown inline for
t he sake of this exanple.
XML browser XSmiles woul d use
<xforms:instance xlink: href="bookmarks. xm "/>.
-->
<xforms:instance xm ns="">
<bookmar ks>
<section nanme="nmi n">
<bookmark href="http://ww. xsm | es. or g/ deno/ denps. xm " nane="Mi n page"/>
</ section>
<secti on nane="denos" >
<bookmar k href="ht www. xsmi | es. or g/ deno/ f o/ i mages. f 0" nane="i nages"/ >

<bookmar k href="ht

tp://
<bookmark href="http://ww. xsm | es. org/deno/f o/ xforns-ecma. xm " name="xfornms-e
tp://

www. xsmi | es. or g/ demo/ fo/ si p. fo" nane="sip"/>
</ section>
<section nane="m sc">
<bookmar k href ="si p: thonkal a@deno.tm . hut.fi" name="cal|l: nhonkal a"/>
<booknmar k href="sip:tvranan@xanpl es. conf’ nanme="call: tvranman"/>
<bookmark href="http://ww. xsm | es. org/deno/|inks.xm " name="Links"/>
</ section>
<section nane="XForns" >
<bookmark href="file:/C:/source/xsmn | es/deno/ xf or ns/ xf or ms- xm events. xn "
<bookmark href="file:/C:./sourcel/xsm | es/deno/ xforns/ nodel 3. xm " nanme="nodel 3"/
<bookmark href="file:/C/
</ section>
</ bookmar ks>
</ xforms:instance>
<xforms:submtinfo id="s01" nethod="post" action="http://ww. exanpl es.conl"/>
</ xf or ns: nodel >
</ head>
<body>
<xforms: repeat nodeset="bookmarks/section" id="repeat Sections">
<xforms:input ref="@ane" class="editField >
<xforms: caption class="secti onCaption">Secti on</xforns: capti on>
</ xformns:input>

source/ xsni | es/ deno/ xf orns/ repeat . f 0" nane="repeat +

<I-- BOOKMARK REPEAT START -->

<xforns: repeat nodeset ="booknark" i d="repeat Bookmarks" >
<xforns: I nput ref="@ane">
<xf orns: capti on>Booknar k nanme</ xf orns: capti on>
</ xforms:input>
<xfornms:input ref="@ref">
<xf ormns: capti on>URL</ xf or ns: capti on>
</ xforms:input>
</ xf orms: repeat >
</ xforms: repeat >
<p>

<!'-- | NSERT BOOKMARK BUTTOCN - ->

<xforms: button id="insertbutton">

<xforms: capti on>l nsert booknmark</xformns: capti on>

<xforms:insert nodeset="/bookmarks/section[xforns: cursor('repeatSections')]/bookna
</ xforms: button>

<!-- DELETE BOOKMARK BUTTCN - ->

<xforms: button id="del ete">
<xforns: capti on>Del et e bookmar k</ xf orns: capti on>
<xformns: del et e nodeset ="/ bookmar ks/ secti on[xf orms: cursor (' repeat Secti ons')]/ bookma
</ xf orms: butt on>
</ p>
<p>

<!-- I NSERT SECTI ON BUTTON -->

<xforms: button id="insertsecti onbutton">

<xforms: capti on>l nsert section</xforms:caption>

<xforms:insert nodeset="/bookmarks/section" at="xforns:cursor('repeatSections')" p
</ xf orms: button>

<!-- DELETE SECTI ON BUTTON - ->

<xforms: button id="del etesecti onbutton">
<xforns: capti on>Del ete section</xforns: capti on>
<xforns: del et e nodeset ="/ bookmar ks/ secti on" at="xforns:cursor('repeatSections')" e
</ xf orms: butt on>
</ p>

<I-- SUBM T BUTTON -->

<xforms:submt submtlnfo="s01">
<xforms: capti on>Save</ xf or ns: capti on>
<xforms:hint>Cick to subnit</xforns: hint>
</ xforms:submt>
</ body>

</htm >

F Changelog (Non-Normative)

This section enumerates substantive changes since the last public version of the XForms 1.0 specification. See the
diff-marked version for detailed diff-marks.

The XForms namespace in this version is http://www.w3.0rg/2002/01/xforms.

Rearranged chapter and section order.

Added clarification on nested repeats; disallowed switch inside repeat.

Added appendix containing complete X Forms examples (E Complete XForms Examples).

Clarified that element instance can contain content in any namespace, including the X Forms namespace.
Clarified that serialized instance datais wrapped in element instanceData if required for single-rootedness.
Clarified that the IDL function getlnstanceData() must return a singly rooted document.

» New materia on extension functions and interoperability.

» Clarified the behavior of XForms Action toggle.

» Clarified positioning of cursor after insert/del ete operation, and delete from empty.
Additionally, the following changes were made to the Schema for X Forms:

18-Dec TVR Require attribute submtinfo on el ement <subnmit>

18-Dec TVR Add attribute role on el enent <script>

28-Dec MID Change content nodel of <bind> fromenpty to bind*

02-Jan MID Al'l ow <itenset> inside <choi ces>

02-Jan MID d eanup: no explicit number Or Unbounded si npl eType

02-Jan MID C eanup: renoved sel ect Ul Type sinpl eType

02-Jan MID C eanup: schema now val i dates attribute nedi aTypeExtension on el enment <subnitln
02-Jan MID d eanup: schema now validates attribute nethod on el ement <subnitl nfo>
02-Jan MID C eanup: schema now validates attribute replace on el enent <submtlnfo>
08-Jan MID Al l owed XForns Actions as children of <submtlnfo>

08-Jan MID Added el ement extensionFunctions to <nodel >

09-Jan MID Typo: Added m ssing attribute nodel on <resetlnstance>

09-Jan MID Typo: Fixed content nodel of <alert> to nmatch <hel p>&<hi nt>

G Acknowledgments (Non-Normative)

This document was produced with the participation of the XForms Working Group:

Bteven Pemberton, CWI (Chair)

Bebastian Schnitzenbaumer, Mozquito Technologies (Chair)
Ricah Dubinko, Cardiff (Editor)

Peter Stark, Ericsson

Mikko Honkala, Helsinki University Of Technology

Roland Merrick, IBM (Editor)

P. V. Raman, IBM (Editor)

Rinda Bucsay Welsh, Intel (Until April 2001)

Gavin McKenzie, JetForm Corporation (Until January 2001)
Rob McDougall, JetForm Corporation (Until January 2001)
John McCarthy, Lawrence Berkeley National Laboratory (Until November 2000)
Prank Olken, Lawrence Berkeley National Laboratory (Until November 2000)
Ray Waldin, Lexica, LLC

Pantek Celik, Microsoft

Panagiotis Reveliotis, Phillips (Until December 2000)

David Cleary, Progress Software

John Boyer, PureEdge Solutions Inc

RMike Mansell, PureEdge Solutions Inc (Until March 2001)

Josef Dietl, Mozquito Technologies

Boug Dominiak, Openwave

Michael Fergusson, Softquad (Until January 2001)

Dave Raggett, W3C/Openwave (W3C Staff Contact until December 2000)
Reigh Klotz, Xerox

Prank Boumphrey, HTML Writer's Guild (Until November 2000)
Dave Navarro, WebGeek Inc.

Dave Hyatt, Netscape/AOL

Eric Pollmann, Netscape/AOL

Pom Butcher, OpenDesign

K. P. Lee, Phillips

Roli Wendorf, Phillips

"Ped Wugofski, Openwave

Josef Dietl, Mozquito Technologies

Zoe Lacroix, SurroMed, Inc.

Masayasu | shikawa, W3C (Staff Contact until September 2001)
Phierry Michel, W3C (W3C staff Contact)

The XForms Working Group has benefited in its work from the participation of Invited Experts:

Pom Schnetlage, University of Berkeley

Dan Gillman, Federal Bureau of Labor Statistics
Eliot Christian, U.S. Geological Survey

Note:

Editor Acknowledgments: Previous versions of this document were edited with assistance from Dave Raggett (until
December 2000) and Linda Bucsay Welsh (until April 2001). Martin Dirst edited the section on input modes.

Note:

Additional Acknowledgments: The editors would like to thank Kai Scheppe, Malte Wedel and Gétz Bock for
constructive criticism on early versions of the binding discussion and their contributions to its present content. We
thank John Boyer for authoring the sections on the recalculation sequence algorithm—see C Recalculation
Sequence Algorithm. Finally, we would like to thank members of the public WWW-Forms@w3c.org mailing list
for their careful reading of draft versions of this specification and providing constructive suggestions and criticisms.

Note:

Additional Acknowledgments: The Working Group would like to thank the following members of the XML
Schema-XForms joint task force: Daniel Austin (chair), David Cleary, Micah Dubinko, Martin Dirst, David Ezell,
Leigh Klotz, Noah Mendelsohn, Roland Merrick, and Peter Stark for their assistance in identifying a subset of XML
Schemafor use in XForms.

H Production Notes (Non-Normative)

This document was encoded in the XMLspec DTD (which has documentation available). The XML sources were
transformed using xmlspec.xdl style sheet. The primary tools used for editing were SoftQuad XMetal. and EMACS
with psgml and XAE. The XML was validated using XMLLint (part of the GNOME libxml package) and
transformed using X SLTProc—part of the GNOME libxd package). The multi-file HTML version was produced
using the Xalan processor. The HTML versions were also produced at times with the Saxon engine. The editors used
the W3C CV S repository and the W3C IRC server for collaborative authoring.

http://www.w3.org/XML/1998/06/xmlspec-v21.dtd
http://www.w3.org/XML/1998/06/xmlspec-v21.dtd
http://www.w3.org/XML/1998/06/xmlspec-report-v21.htm
http://www.w3.org/XML/1998/06/xmlspec.xsl

