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Abstract

The term \product of inertia" is an ambiguous term in the engineering community. The

ambiguity arises because of the lack of a standard sign convention for describing certain terms

associated with the mass distribution of a body. The di�erence between the two competing

standards is simply a negative sign, and the reason for this di�erence is explained below.

1 Introduction

The concept of mass moment of inertia is usually �rst introduced in undergraduate physics and
engineering courses. Quite often it is explained as the rotational counterpart to mass. This analogy
is compeling because Newton's equation which governs the translational motion of a rigid body B
in a plane perpendicular to the unit vector z is

F = m a (1)

where F is the resultant force acting on B; m is the mass of B; and a is the acceleration of Bo,
the center of mass of B. The rotational counterpart to equation (1) is a simpli�ed form of Euler's
dynamical equation which is suitable for planar analysis, namely

T = Izz ������������� (2)

where T is the z component of the moment of all forces about Bo; Izz is the mass moment of inertia
about the line passing through Bo and parallel to z; and������������� is the angular acceleration of B.

Although this analogy is \intuitive", it fails to have a three-dimensional counterpart. Newton's
law which governs the translational motion of B in three-dimensional space is simply equation (1).
However, Euler's law for three-dimensional rotational motions of B is more elaborate, namely

T = I �������������������������� + !!!!!!!!!!!!! � I �������������!!!!!!!!!!!!! (3)

where T is the moment of all forces about Bo; I is the central inertia dyadic of B (we will return to
this momentarily); and !!!!!!!!!!!!! is the angular velocity of B. The compact represention of equation (3)
can be misleading. When it is written out in scalar form, it is much longer. For example, when the

�Principal Technical Developer, MSC.Software, San Mateo, CA 94402
yEngineering Specialist, Space Systems/Loral Palo Alto CA 94303

1



vectors T and !!!!!!!!!!!!! appearing in equation (3) are expressed in terms of the orthogonal unit vectors
bx, by, bz �xed in B as

T = Txbx + Tyby + Tzbz

!!!!!!!!!!!!! = !xbx + !yby + !zbz (4)

then the scalar equations of motion can be expressed in terms of B's moments of inertia Ixx, Iyy,
Izz, and B's products of inertia Ixy, Ixz, Iyz as

1

Tx = Ixx _!x + Ixy _!y + Ixz _!z + !y(Ixz!x + Iyz!y + Izz!z)� !z(Ixy!x + Iyy!y + Iyz!z) (5)

Ty = Ixy _!x + Iyy _!y + Iyz _!z + !z(Ixx!x + Ixy!y + Ixz!z)� !x(Ixz!x + Iyz!y + Izz!z) (6)

Tz = Ixz _!x + Iyz _!y + Izz _!z + !x(Ixy!x + Iyy!y + Iyz!z)� !y(Ixx!x + Ixy!y + Ixz!z) (7)

which, when Ixy = Ixz = Iyz = 0, can be reduced to

Tx = Ixx _!x + !y!z(Izz � Iyy) (8)

Ty = Iyy _!y + !x!z(Ixx � Izz) (9)

Tz = Izz _!z + !x!y(Iyy � Ixx) (10)

The symbol I appearing in equation (3) shows up in many other other useful dynamical rela-
tionships. For example, the angular momentum of B is

H = I ������������� !!!!!!!!!!!!! (11)

and the kinetic energy of B is

K =
1

2
!!!!!!!!!!!!! ������������� I ������������� !!!!!!!!!!!!! (12)

Before continuing with an involved description of a central inertia dyadic, it is helpful to have a clear
understanding of dyadics. This understanding is most clearly communicated by �rst discussing the
relationship between vectors and column matrices and then focusing attention on the relationship
between dyadics and 3x3 matrices.

2 Vectors, Dyadics and Matrices

A vector is a quantity with a magnitude and an associated direction. A vector can be expressed
in a variety of ways. For example the vector v can be expressed in terms of the orthogonal unit
vectors bx, by, bz as

v = �x bx + �y by + �z bz (13)

which can also be expressed as

v =
�
bx by bz

�
2
4 �x
�y
�z

3
5 (14)

1Because of the variety of de�nitions of product of inertia, there is an ambiguity on the sign in front of Ixy, Ixz,
Iyz in equations (5-7)
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The 3x1 matrix associated with the vector in equation (14) is

vb =

2
4 �x
�y
�z

3
5 (15)

The subscript B in equation (15) denotes that the matrix is associated with bx, by, and bz. This
subscript may be omitted when the context is clear.

A dyad is a quantity with magnitude and two associated directions. A dyadic is the sum of one
or more dyads. A dyadic can be expressed in a variety of ways. For example the dyadic I can be
expressed in terms of the orthogonal unit vectors bx, by, bz as

I = �xxbxbx + �xybxby + �xzbxbz

+ �yxbybx + �yybyby + �yzbybz

+ �zxbzbx + �zybzby + �zzbzbz (16)

which can also be written as

I =
�
bx by bz

�
2
4 �xx �xy �xz
�yx �yy �yz
�zx �zy �zz

3
5
2
4 bx

by

bz

3
5 (17)

The 3x3 matrix associated with the dyadic in equation (17) is

I b =

2
4 �xx �xy �xz
�yx �yy �yz
�zx �zy �zz

3
5 (18)

The subscript B in equation (18) denotes that the matrix is associated with bx, by, and bz. This
subscript may be omitted when the context is clear or when the matrix is the identity matrix (which
implies that the dyadic is a unit dyadic).

3 Inertia Properties

The integral that must be perfomed to calculate the central inertia dyadic of a rigid body B, is

I =

Z
(Up2

� pp) dm (19)

where U is the unit dyadic; p= is the position vector from Bo, the mass center of B, to an arbitrary
point on B; and dm is the mass of a di�erential element of B. I, the dyadic which results from
performing this integral is the quantity which is used in connection with equations (3) - (12).

3.1 Moments of Inertia

The moments of inertia are usually designated Ixx, Iyy, and Izz and each moment of inertia is
associated with a line. For example, Ixx is associated with a line passing through Bo and parallel
to bx. The moments of inertia can be found in a variety of ways. One way to �nd Ixx is to form
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the inertia dyadic as speci�ed in equation (19) and then perform the following dot-products with
bx:

Ixx = bx ������������� I �������������bx (20)

A second way to �nd Ixx is to form the inertia dyadic as speci�ed in equation (19), form the
associated inertia matrix like the one in equation (18), and then note that

Ixx =
(18)

�xx (21)

A third way to �nd Ixx is to express p= as

p= = x bx + y by + z bz (22)

and then calculate Ixx directly by performing the following integral

Ixx =
(19;22)

Z
(y2 + z2) dm (23)

3.2 Products of Inertia

The products of inertia are usually designated Ixy, Iyz, and Izx and each product of inertia is
associated with two lines. For example, Iyz is associated with a line passing through Bo and
parallel to by and a second line passing through Bo and parallel to bz. The products of inertia
can be found in a variety of ways. One way to �nd Iyz is to form the inertia dyadic as speci�ed in
equation (19) and then perform the following dot-products with by and bz.

Iyz = by ������������� I �������������bz (24)

A second way to �nd Iyz is to form the inertia dyadic as speci�ed in equation (19), form the
associated inertia matrix like the one in equation (18), and then note that

Iyz =
(18)

�yz (25)

A third way to calculate Iyz is to express p= as was done in equation (22), and then calculate Iyz
directly by performing the following integral

Iyz =
(19;22)

�

Z
y z dm (26)

4 Di�erences in opinion

The confusion surrounding \products of inertia" in the engineering community is further exasper-
ated because there are two distinct quantities. First there is the term \product of inertia" and
then there is the symbol Iyz, which may or may not directly represent a product of inertia. There
are four distinct opinions and they are listed below. Along with these opinions are a list of various
proponents of each convention.
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� Some engineering authors de�ne both the symbol Iyz and the term \product of inertia" to
mean the integral in equation (26) with the negative sign. The proponents of this convention
include [1, pg. 11] and [2, pg. 172]. [3], [4, pg. 303], [5, pg. 220], [6, pg. 172], [7, pg. 62], [8],
[9, pg. 237], [10, pg. 88], [11, pg. 199]

� Some engineering authors �nd the negative sign in equation (26) to be objectionable, so they
de�ne both the symbol Iyz and the term \product of inertia" as the integral in equation (26)
without the negative sign. The o�-diagonal terms of the inertia matrix are then negated
before being used. The proponents of this second convention include [12, pg. 1017], [13, pg.
719], [14], [15], [16], and [17, pg. 129].

� A third group of engineering authors de�ne the term \product of inertia" as the integral in
equation (26) without the negative sign, but de�ne the symbol Iyz with the negative sign.
The proponents of this third convention include [18], [19, pg. 418], and [20].

� Lastly, some authors avoid the term \product of inertia" altogether and de�ne the symbol Iyz
as the integral in equation (26) with the negative sign, The proponents of this fourth option
include [21] and [22].

To make matters worse, there is no agreement among vendors of commerically available multi-
body dynamics programs. For example, Visual NastranTM (formerly called Working Model) and
Autolev

TMuse the integral in equation (26) with the negative sign, but AdamsTM, uses a positive
summation.

As a result of the di�ering de�nitions, an engineer should be precise when describing what is
meant by the term \product of inertia" and their associated symbols.
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