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Abstract

At times, it is convenient to model a 
exible beam as a set of rigid bodies connected by

linear springs. The modeling of a beam as a set of rigid bodies connected 
exibly rather than as

is done with �nite element codes, namely, modeling a beam as a set of 
exible bodies connected

rigidly, has several advantages. It provides for selective modeling of 
exible objects in a rigid

body code, permits an analyst to easily design a control system which accounts for 
exibility of

system components, and incorporates certain dynamical nonlinear e�ects, for example centrifu-

gal sti�ening, in the simulation of 
exible systems. In modeling the beam in this manner, it is

necessary to determine the values of these spring constants. This paper provides a method for

this determination.

1 Introduction
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Figure 1: Discretization of Flexible Beam

Figure 1 is a schematic representation of a base B0 attached to a 
exible beam which has been

discretized into n rigid bodies Bi, (i=1, ..., n). Body Bi is connected to body Bi+1 at point Pi

by means of one linear torsional spring, two linear bending springs, and one linear extensional
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spring. The torsional spring restricts twisting of the beam about the line connecting Pi to Pi+1, the

bending springs restrict bending of the beam in directions transverse to the line connecting Pi to

Pi+1, and the extensional spring restricts elongation of the beam. The spring constants associated

with torsion, bending, and extension are K�
i , K

�
i , K

 
i , and Kxi , respectively. The length of each

beam element when the beam is undeformed is denoted L, and the stretch of the extensional spring

is denoted xi. The elastic modulus of Bi is denoted E, and its area moment of inertia is I.

To characterize the orientation of Bi in Bi�1, a right-handed set of mutually perpendicular unit

vectors bix, biy, biz, is �xed in Bi with bix directed from Pi to Pi+1. The orientation of Bi in Bi�1

is found by �rst setting bix = bi�1x, biy = bi�1y, and biz = bi�1z, and then subjecting Bi to the

body-�xed rotation sequence described in magnitude and direction by �ibix, �ibiy, and  ibiz. In

its undeformed con�guration, biy (i=1, ..., n) is pointing vertically downward, as shown in Figure 1.

It is assumed that the potential function Vi of the set of springs connecting Bi to Bi�1 can be

written as

Vi =
1

2
K�
i �

2
i +

1

2
K�i �

2
i +

1

2
K i  

2
i +

1

2
Kxi x

2
i (i=1, ..., n) (1)

The contribution of Vi to Fr , the generalized active forces1, is given by

(Fr)Vi
= �

@V

@qr
(r=1, ..., 4n) (2)

where qr represents any of �i, �i,  i, or xi (i=1, ..., n). When the beam is at rest in a Newtonian

reference frame and when the generalized coordinates �i, �i,  i, xi (i=1, ..., n) are independent of

each other, then the set of equations which govern the static con�guration of the beam are given

by [1, p. 179],

Fr = 0 (r=1, ..., 4n) (3)

2 Extensional Spring Constants

If the only load applied to the beam is a force of magnitude R applied horizontally to point Pn

then equations (1), (2), and (3) can be used to show that the non-zero generalized active forces are

given by

�Kxi xi + R =
(1;2;3)

0 (i=1, ..., n) (4)

The solution of equation (4) for Kxi is

Kxi =
(4)
R = xi (i=1, ..., n) (5)

1Generalized active forces are used in various dynamic's formulation methods, e.g, Kane's method (see [1]) and

Lagrange's method
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As will become relevant momentarily, xi, the extension of Bi, can be expressed in terms of �[iL]

and �[(i + 1)L], the X-displacements of Pi and Pi+1, as

xi = �[(i + 1)L]� �[iL] (i=1, ..., n) (6)

Using a solution obtained from elasticity theory [2, p. 74 Eq. 3], one may express �[iL] in terms of

E, Young's elastic modulus, and A, the cross sectional area, as

�[iL] =
RiL

AE
(i=1, ..., n) (7)

Substituting from equation (7) into equation (6), one arrives at

xi =
(6;7)

RL

AE
(i=1, ..., n) (8)

Lastly, substitution of equation (8) into equation (5) produces

Kxi =
(5;8)

AE

L
(i=1, ..., n) (9)

3 Torsional Spring Constants

If the only load applied to the beam is a torque Tnbnx applied to body n, then equations (1), (2),

and (3) can be used to show that the non-zero generalized active forces are given by

�K�
i �i + Tn =

(1;2;3)
0 (i=1, ..., n) (10)

The solution of equation (10) for K�
i is

K�
i =
(10)

Tn = �i (i=1, ..., n) (11)

As will become relevant momentarily, �i, the \relative twist" of Bi, can be expressed in terms of

�i, the \absolute twist" of the beam at the midpoint of Bi, and �i�1, the \absolute twist" of the

beam at the midpoint of Bi�1, as

�1 = �1 (12)

�i = �i � �i�1 (i=2, ..., n) (13)

Using a solution obtained from elasticity theory [2, p. 287 Eq. 1], one may express �i in terms of

G, the shear modulus, and J , the polar moment of inertia, as

�i =
Tn(i� 0:5)L

JG
(i=1, ..., n) (14)
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Substituting from equation (14) into equations (12) and (13), one arrives at

�1 =
(12;14)

TnL

2JG
(15)

�i =
(13;14)

TnL

JG
(i=2, ..., n) (16)

Lastly, substitution of equations (15) and (16) into equation (11) produces

K�
1 =

(11;15)

2JG

L
(17)

K�
i =

(11;16)

JG

L
(i=2, ..., n) (18)

4 Bending Spring Constants

If the only applied load on the beam is a force of magnitude R directed vertically downward

and applied to point Pn, then equations (1), (2), and (3) can be used to show that the non-zero

generalized active forces are given by

�K�i �i + R
nX

r=i

(L+ xr) cos(�1 + �2 + : : : �r) =
(1;2;3)

0 (i=1, ..., n) (19)

Approximating L+ xr as L and linearizing equation (19) in �i (i=1, ..., n) (de
ections are small)

results in

�K�i �i + RL(n+ 1� i) =
(19)

0 (i=1, ..., n) (20)

The solution of equation (20) for K�i is

K�i =
(20)

RL(n+ 1� i) = �i (i=1, ..., n) (21)

As will become relevant momentarily, �i, the \relative bending angle", may be expressed in terms

of �i and �i�1, \absolute bending angles", as

�1 = �1 (22)

�i = �i � �i�1 (i=2, ..., n) (23)

Using purely geometric considerations, �i can be related to Yi, the vertical displacement of the

beam at Pi, by

sin�i =
Yi � Yi�1
L+ xi

(i=1, ..., n) (24)

Approximating L+ xi as L and linearizing equation (24) in �i (i=1, ..., n) leads to

�i =
(24)

Yi � Yi�1
L

(i=1, ..., n) (25)
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Using the solution obtained from Euler beam theory for a uniform cantilevered beam with an end

load [2, p. 96 Fig. 1a], one may express Yi in terms of E, Young's elastic modulus, I, the area

moment of inertia, and L, the total length of the beam, as

Yi =
R L3 (3ni2 � i3)

6 E I
(i=1, ..., n) (26)

Substituting from equation (26) into equation (25) results in

�i =
(25;26)

R L2

6 E I
(6in� 3n+ 3i� 3i2 � 1) (27)

�i�1 =
(25;26)

R L2

6 E I
(6in� 9n+ 9i� 3i2 � 7) (28)

Substitution of equations (27) and (28) into equations (22) and (23) results in

�1 =
(22;27)

R L2

6 E I
(3n� 1) (29)

�i =
(23;27;28)

R L2

6 E I
(6n� 6i+ 6) (i=2, ..., n) (30)

Lastly, substitution of equations (29) and (30) into equation (21) produces

K�1 =
(21;29)

EI

L

6n

3n� 1
(31)

K�i =
(21;30)

EI

L
(i=2, ..., n) (32)

5 Results

It is natural to wonder if the values for the extensional, torsional and bending spring constants

work for a wide range problems. One may wonder what happens under di�erent loading conditions

or di�erent end conditions. Alternately, one may wonder how well this technique predicts dynamic

phenomenon, e.g., natural frequencies. To that end, a variety of calculations were performed on a

uniform beam using the symbolic manipulator Autolev [3]. The results of these calculations are

recorded below:

1. Bending of ten-element cantilever beam with both mid-point and end loads and end-torque:

For both small and large loads, the de
ections and curvature are visually indistinguishable

from those predicted by Euler beam theory.

2. Bending of ten-element pin-pin beam with mid-point, 3/4-point, and end torques:

For small loads, the de
ections and curvature match those predicted by Euler beam theory

very well. For larger loads, the de
ections are smaller than those predicted by Euler beam

theory. This discrepancy is understood in light of the fact that Euler beam theory predicts

the same deformation for both a pin-pin and pin-roller beam.
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3. Bending of ten-element pin-roller beam with mid-point, 3/4-point, and end torques:

For both small and large loads, the de
ections and curvature are visually indistinguishable

from those predicted from Euler beam theory. In light of the results in item 2, it is clear that

this technique approximates axial sti�ening.

4. Bending of ten-element cantilever-cantilever beam with 3/4-point loads:

For small loads, the de
ections and curvature match those predicted by Euler beam theory

very well. For larger loads, the de
ections are smaller than those predicted by Euler beam

theory. This discrepancy is understood in light of the fact that Euler beam theory predicts

the same deformation for both a cantilever-cantilever and cantilever-cantilever on

a roller beam.

5. Bending of ten-element cantilever-cantilever on a roller beam with 3/4-point loads:

For both small and large loads, the de
ections and curvature are visually indistinguishable

from those predicted from Euler beam theory. In light of the results in item 4, it is clear that

this technique approximates axial sti�ening.

6. First three natural bending, torsional, or extensional frequencies of a cantilever beam:

For a three element beam, the error in the smallest natural frequency was less than 2%. For

an eight element beam, the error in the three smallest natural frequencies were less than 5%.
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