
Macros

FIFO and LIFO sing the BLUes*

Kees van der Laan

Abstract

FIFO, FirstInFirstOut, and LIFO, LastInFirstOut,

are well known techniques for handling sequences.

In T

E

X macro writing they are abundant but are

not easily recognized as such. T

E

X templates

for FIFO and LIFO are given and their use

illustrated. The relation with Knuth's \dolist,

answer Exercise 11.5, and \ctest, p. 376, is given.

Keywords: Education, FIFO, LIFO, list processing,

macro writing, plain T

E

X.

Introduction

It started with the programming of the Tower

of Hanoi in T

E

X, van der Laan (1992a). For

printing each tower the general FIFO | First-

-In-First-Out

1

| approach was considered.

2

In

literature (and courseware) the programming of

these kind of things is done di�erently by each

author, inhibiting intelligibility. In pursuit of Wirth

(1976), T

E

X templates for the FIFO (and LIFO)

paradigm will hopefully improve the situation.

In this article we will see various slightly

di�erent implementations of the basic FIFO

principle.

FIFO

In the sequel, I will restrict the meaning of FIFO to

an input stream which is processed argument-wise.

FIFO can be programmed in T

E

X as template

\def\fifo #1%

{\ifx\ofif#1\ofif\fi\process#1\fifo}

\def\ofif #1\fifo{\fi}

�: Earlier versions appeared in MAPS 92.1,

proceedings EuroT

E

X '92, and TUGboat 14.1.

BLU is Ben Lee User of the The T

E

Xbook fame.

It makes the title sing, I hope.

1: See Knuth (1968), section 2.2.1.

2: In the Tower of Hanoi article Knuth's list data-

structure was �nally used| T

E

Xbook Appendix

D.2 | with FIFO inherent.

20 GUST, Zeszyt 4 1994

The \fifo command calls a macro \process that

handles the individual arguments. Often you can

copy \fifo straight out of this article, but you have

to write a version of \process that is speci�c to

your application.

To get the avor.

Length of string. An alternative to Knuth's

macro \getlength, The T

E

Xbook p. 219, is

obtained via the use of \fifo with

\newcount\length

\def\process #1{\advance\length \by1 }

Then \fifo aap noot\ofif \number\length

yields the length 7.

3

Number of asterisks. An alternative to Knuth's

\atest, The T

E

Xbook, p. 375, for determining the

number of asterisks, is obtained via \fifo with

\newcount\acnt

\def\process #1%

{\if*#1\advance\acnt by1 \fi}

Then \fifo abc*de*\ofif \number\acnt yields

the number of asterisks: 2.

4

Vertical printing. David Salomon treats the

problem of vertical printing in his courseware.

Via an appropriate de�nition of \process and a

suitable invocation of \fifo it is easily obtained.

\def\process #1{\hbox{#1}}

\vbox{\offinterlineskip\fifo abc\ofif}

yields

a

b

c .

Tower of Hanoi. Printing of a tower can be

done via

\def\process #1%

{\hbox to3ex{%

\hss\vrule width#1ex height1ex\hss}}

\vbox{\baselineskip1.1ex\fifo12\ofif}

Termination. For the termination of the tail

recursion the same T

E

Xnique as given in the The

T

E

Xbook, p. 379, in the macro \deleterightmost,

is used. This is elaborated as \break in Fine (1992),

in relation to termination of the loop. The idea is

that when \ofif is encountered in the input stream,

that is, when \ifx\ofif#1... is true, all tokens in

the macro up to and including \fifo| the start

for the next level of recursion| are gobbled by a

3: Insert \obeyspaces when the spaces should be

counted as well.

4: As the reader should realize, this works correctly

when there are �rst level asterisks only. For counting

at all levels automatically, a more general approach

is needed, see Knuth's \ctest, p. 376.

subsequent call to \ofif.

5

Because the matching

\fi is gobbled too, this token is inserted via

the replacement text of \ofif. This T

E

Xnique is

better than Kabelschacht's, (1987), where the token

preceding the \fi is expanded after the \fi via

the use of \expandafter. When this is applied the

exchange occurs at each level in the recursion. It also

better than the \let\next=... T

E

Xnique, which is

used in the The T

E

Xbook, for example in \iterate,

p. 219, because there are no assignments.

My �rst version had the two tokens after

\ifx reversed | a cow ew by | and made me

realize the non-commutativity of the �rst level

arguments of T

E

X's conditionals. For example, \ifx

aa\empty... di�ers from \ifx\empty aa..., and

\if\ab\aa... from \if\aa\ab..., with \def\aa

{aa}, \def\ab{ab}. In math, and in programming

languages like Pascal, the equality relation is

commutative,

6

and no such thing as expansion

comes in between. When not alert with respect to

expansion, T

E

X's \if-s can surprise you.

The \fifo macro is a basic one. It allows one

to proceed along a list | at least conceptually|

and to apply a (user) speci�ed process to each

list element. By this approach the programming

of going through a list is separated from the

various processes to be applied to the elements.

7

It adheres to the separation of concerns principle,

which I consider fundamental.

The input stream is processed argumentwise,

with the consequence that �rst level braces will

be gobbled. Beware! Furthermore, no outer control

sequences are allowed, nor \par-s. The latter can be

permitted via the use of \long\def.

A general approach| relieved from the re-

strictions on the input stream: every token is

processed until \ofif| is given in the The

T

E

Xbook answer to Exercise 11.5 (\dolist...)

and on p. 376 (\ctest...). After adaptation to

the \fifo notation and to the use of macros instead

of token variables, Knuth's \dolist comes down to

\def\fifo

{\afterassignment\tap \let\nxt= }

\def\tap

{\ifx\nxt\ofif\ofif\fi\process

5: In contrast with usual programming of recursion

start with the in�nite loop, and then insert the

\if...\ofif\fi.

6: So are T

E

X's \if-s after expansion.

7: If a list has to be created, Knuth's list data-

structure might be used, simplifying the execution

of the list. See The T

E

Xbook Appendix D.2.

1994 GUST, Zeszyt 4 21

\nxt\fifo}

\def\ofif#1\fifo{\fi}

This general approach is indispensable for macro

writers. My less general approach can do a lot

already, for particular applications, as will be shown

below. But, : : :beware of its limitations.

Variations. The above \fifo can be seen as a

template for encoding tail recursion in T

E

X, with

arguments taken from the input stream one after

another. An extension is to take two arguments

from the input stream at a time, with the second

argument to look ahead, via

\def\fifo #1#2%

{\process#1\ifx\ofif#2

\ofif\fi\fifo#2}

\def\ofif#1\ofif{\fi}

Note the systematics in the use of the parameter

separator in \ofif; here \ofif and in the previous

macro \fifo, the last token of the replacement text.

Although the principle of looking ahead with

recursion is abundant in computer programming,

a small example to illustrate its use is borrowed

from Salomon: delete last character of argument.

It is related to \deleterightmost, The T

E

Xbook

p. 379. E�ective is the following, where a second

parameter for \fifo is introduced to look ahead,

which is inserted back when starting the next

recursion level.

\def\gobblelast #1{\fifo#1\ofif}

\def\fifo #1#2%

{\ifx\ofif#2\ofif\fi#1\fifo#2}

\def\ofif#1\ofif{\fi}

Then \gobblelast{aap} will yield aa.

And what about recursion without parameters? A

nice example of that is a variant implementation

of Knuth's \iterate of the \loop, The T

E

Xbook,

p. 219

\def\iterate

{\body%

\else\etareti%

\fi%

\iterate}

\def\etareti #1\iterate{\fi}

This \iterate contains only 5 tokens in contrast

with Knuth's 11. The e�ciency and the needed

memory is determined by the number of tokens in

\body, and therefore this 5 vs. 11 is not relevant.

The idea behind including this variant here is that

the FIFO principle can lead to simple encoding

of tail recursion even when no arguments are

processed.

Variable number of parameters. T

E

X macros can

take at most 9 parameters. The above \fifo macro

can be seen as a macro which is relieved from that

restriction. Every group, or admissible token, in the

input stream after \fifo up to and including \ofif,

will become an argument to the macro. When

the \ofif token is reached, the recursion| that

is reading of arguments| will be terminated.

8

Unknown number of arguments. Tutelaers

(1992), as mentioned by Eijkhout (1991), faced

the problem of inputting a chess position. The

problem is characterized by an unspeci�ed num-

ber of positions of pieces, with for the pawn

positions the identi�cation of the pawn generally

omitted. Let us denote the pieces by the capital let-

ters K(ing), Q(ueen), B(ishop), (k)N(ight), R(ook),

and P(awn), with the latter symbol default. The

position on the board is indicated by a letter a, b,

c, : : : , or h, followed by a number, 1, 2, : : : , or 8.

Then, for example,

\position{Ke1, Qd1, Na1, e2, e4}

should entail the invocations

\piece{K}{e1}\piece{Q}{d1}\piece{N}{a1}

\piece{P}{e2}\piece{P}{e4}

This can be done by an appropriate de�nition

of \position, and an adaptation of the \fifo

template, via

\def\position #1%

{\fifo#1,\ofif,}

\def\fifo #1,%

{\ifx\ofif#1\ofif\fi%

\process#1\relax\fifo}

\def\ofif #1\fifo{\fi}

\def\process #1#2#3%

{\ifx\relax#3%

\piece{P}{#1#2}\else\piece#1{#2#3}\fi}

With the following de�nition (simpli�ed in relation

to Tutelaers)

\def\piece #1#2{ #1-#2}

we get K-e1 Q-d1 N-a1 P-e2 P-e4.

For an unknown number of arguments at two

levels see the Nested FIFO section.

Citation lists. In a list of citations it is a good

habit to typeset three or more consecutive numbers

as a range. For example 1, 2, 3 as 1{3. This must be

done via macros when the numbers are represented

by symbolic names, which get their value on the

8: Another way to circumvent the 9 parameters

limitation is to associate names to the quantities

to be used as arguments, let us say via def's,

and to use these quantities via their names in

the macro. This is Knuth's parameter mechanism

and is functionally related to the so-called keyword

parameter mechanism of command languages, and

for example ADA.

22 GUST, Zeszyt 4 1994

y. In general the sequence must be sorted

9

before

typesetting. This has been elaborated by Arseneau

(1992) in a few L

A

T

E

X styles, and for plain T

E

X by

myself. I used the FIFO paradigm in the trivial,

stepping-stone, variant of typesetting an explicit

non-descending sequence in range notation. The

resulting `process' macro could be used in the

general case, once I realized that FISO|Firts-In-

-Smallest-Out|was logically related to FIFO: the

required elements are yielded one after the other,

whether the �rst, the last, the smallest, or : : :you

name it. Perhaps this is a nice exercise for the

reader. For a solution see van der Laan (1993).

10

Vowels, voil�a. Schwarz (1987) coined the problem

to print vowels in bold face.

11

The problem can be

split into two parts. First, the general part of going

character by character through a string, and second,

decide whether the character at hand is a vowel or

not.

For the �rst part use \fifo (or Knuth's

\dolist). For the second part, combine the vowels

into a string, aeiou, and the problem can be reduced

to the question hchari 2 aeiou? Earlier, I used

this approach in searching a card in a bridge hand,

van der Laan (1990, the macro \strip). That was

well-hidden under several piles of cards, I presume?

The following encoding is related to \ismember,The

T

E

Xbook, p. 379

\newif\iffound

%% locate #1 in #2

\def\loc #1#2%

{\def\locate ##1#1##2\end%

{\ifx\empty##2%

\empty\foundfalse

\else\foundtrue\fi}%

\locate#2#1\end}

\def\process #1%

{\uppercase{\loc#1}{AEIOU}%

\iffound{\bf#1}\else#1\fi}

Then \fifo Audacious\ofif yields Audacious.

Variation. If in the invocation \locate #2#1

a free symbol is inserted between #2 and #1,

9: The sorting of short sequences within T

E

X has

been elaborated by Je�rey (1990), and myself in

Syntactic Sugar.

10: However, in my later BLUe's Bibliography, this

is no longer necessary because of the one-pass job

and the inherent simpler approach.

11: His solution mixes up the picking up of list

elements and the process to be applied. Moreover,

his nesting of \if-s in order to determine whether

a character is a vowel or not, is not elegant. Fine

(1992)'s solution, via a switch, is not elegant either.

then \loc can be used to locate substrings.

12

And because fstring

1

2 string

2

g ^ fstring

2

2

string

1

g) string

1

= string

2

, the variant can

be used for the equality test for strings. See also

the Multiple FIFO subsection, for general and more

e�ective alternatives for equality tests of strings.

Processing lines. What about processing lines of

text? In o�cial, judicial, documents it is a habit to

�ll out lines of text with dots.

13

This can be solved

by making the end-of-line character active, with the

function to �ll up the line. A general approach where

we can \process the line, and not only append to

it, can be based upon \fifo.

One can wonder, whether the purpose can't be

better attained, while using T

E

X as formatter, by

�lling up the last line of paragraphs by dots, because

T

E

X justi�es with paragraphs as units.

In the The T

E

Xbook the example about

processing lines is writing answers of the exercises to

the �le answers.tex, line by line, p. 422. The given

\copytoblankline can be recast in FIFO terms as

\def\copytoblankline

{\begingroup\setupcopy\fifol}

{\obeylines\gdef\fifol#1

{\ifx\empty#1\empty\lofif\fi

\processl{#1}\fifol}}

\def\lofif #1\fifol{\fi\endgroup}

\def\processl #1%

{\immediate\write\ans{#1}}

Processing words. What about handling a list of

words? This can be achieved by modifying the \fifo

template into a version which picks up words,

\fifow, and to give \processw an appropriate

function.

\def\fifow #1 %

{\ifx\wofif#1\wofif\fi

\processw{#1}\ \fifow}

\def\wofif #1\fifow{\fi}

Underlining words. In print it is uncommon to

emphasize words by underlining. Generally another

font is used, see discussion of Exercise 18.26 in the

The T

E

Xbook. However, now and then people ask

for (poor man's) underlining of words. The following

\processw de�nition underlines words picked up by

\fifow. Then

\def\fifow #1 %

{\ifx\wofif#1\wofif\fi

\processw{#1}\ \fifow}

\def\wofif #1\fifow{\fi}

12: Think of �nding `bb' in `ab' for example, which

goes wrong without the extra symbol.

13: The problem was posed at EuroT

E

X '91 by Theo

Jurriens.

1994 GUST, Zeszyt 4 23

\def\processw #1%

{\vtop{\hbox{\strut#1}\hrule}}

%%

\fifow leentje leerde lotje lopen

langs de lange lindenlaan \wofif\unskip

yields leentje leerde lotje lopen langs de lange

lindenlaan.

Nested FIFO

One can nest the FIFO paradigm. For processing

lines word by word, or words character by character.

Words character by character. Exercise 11.5,

can be solved by processing words character by

character. A solution to a slightly simpli�ed version

of the exercise reads

\fifow Though exercise \wofif \unskip.

with

\def\processw #1{\fifo#1\ofif}

\def\process #1{\boxit#1}

\def\boxit #1%

{\setbox0=\hbox{#1}\hbox{\lower\dp0%

\vbox{\offinterlineskip

\hrule

\hbox{\vrule\phantom#1\vrule}

\hrule}}}

yields .

In the spirit of \dolist..., Exercise 11.5, is

(variant neglecting word structure)

\def\fifo

{\afterassignment\tap\let\nxt= }

\def\tap {\ifx\nxt\ofif\ofif

\fi\process\nxt\fifo}

\def\ofif #1\fifo{\fi}

\def\process #1%

{\if\space\nxt\

\else\boxit#1\fi}

\fifo Though exercise\ofif.

with the same result .

Mark up natural data. Data for \h(v)align needs

& and \cr marks. We can get plain T

E

X to append

a \cr at each input line, The T

E

Xbook p. 249.

An extension of this is to get plain T

E

X to insert

\cs-s, column separators, and \rs-s, row separators,

and eventually to add \lr, last row, at the end, in

natural data. For example prior to an invocation

of \halign, one wants to get plain T

E

X to do the

transformation

P*ON

DEK*

)

P\cs*\csO\csN\rsD\csE\csK\cs*\lr

This can be done via

\vbox{\hbox{P*ON}\kern.5ex

\hbox{DEK*}} \,\Rightarrow\,

\bdata P*ON

DEK*

\edata \markup\data

\vcenter{\hbox{\data}}

with

\let\ea=\expandafter

\def\bdata {\bgroup\obeylines\store}

\def\store #1\edata{\egroup\def\data{#1}}

\def\markup #1%

{\ea\xdef\ea#1\ea{\ea\fifol#1\lofif}}

and auxiliaries

{\catcode`\^^M=13

\gdef\fifol #1^^M#2%

{\fifo#1\ofif%

\ifx\lofif#2\noexpand\lr\lofif

\fi\noexpand\rs\fifol#2}}

\def\lofif #1\lofif{\fi}

\def\fifo #1#2{%

#1\ifx\ofif#2\ofif

\fi\noexpand\cs\fifo#2}

\def\ofif #1\ofif{\fi}

\def\cs{{\sevenrm{\tt\char92}cs}}

\def\rs{{\sevenrm{\tt\char92}rs}}

\def\lr{{\sevenrm{\tt\char92}lr}}

The above came to mind when typesetting

crosswords,

14

van der Laan (1992b,d),

15

while

striving after the possibility to allow natural input,

independent of \halign processing.

Multiple FIFO

What about FIFO for more than one stream?

16

For example comparing strings, either for equality

or with respect to lexicographic ordering? Eijkhout

(1992, p. 137, 138) provided for these applications

the macros \ifAllChars...\Are...\TheSame, and

\ifallchars...\are...\bfore. The encodings are

focused at mouth processing. The latter contains

many \expandafter-s.

A basic approach is: loop through the strings

character by character, and compare the characters

until either the assumed condition is no longer true,

or the end of either one of the strings, has been

reached.

Equality of strings. The T

E

X-speci�c encoding,

where use has been made of the property of \ifx

for control sequences, reads

\def\eq #1#2%

{\def\st{#1}\def\nd{#2}

\ifx\st\nd\eqtrue\else\eqfalse\fi}

with auxiliary \newif\ifeq.

14: With *, or , given an appropriate function.

15: In (1992d) I set the puzzles via direct use of

nested FIFO. No \halign use nor mark up phase.

16: For simplicity the streams are stored in def-s,

because \read inputs lines.

24 GUST, Zeszyt 4 1994

As a stepping stone for lexicographic compar-

ison, consider the general encoding

\def\eq #1#2%

{\continuetrue\eqtrue

\loop

\ifx#1\empty\continuefalse\fi

\ifx#2\empty\continuefalse\fi

\ifcontinue

\nxte#1\nxtt \nxte#2\nxtu

\ifx\nxtt\nxtu

\else\eqfalse\continuefalse\fi

\repeat

\ifx\empty#1

\ifx\empty#2\else\eqfalse\fi

\else\eqfalse\fi}

with auxiliaries

\newif\ifcontinue \newif\ifeq

\def\nxte #1#2%

{\def\pop ##1##2\pop%

{\gdef #1{##2} \gdef#2{##1}}%

\ea\pop#1\pop}

Then

\def\t{abc} \def\u{ab} \eq\t\u

\ifeq$abc=ab$\else$abc\not=ab$\fi

yields abc 6= ab.

Lexicographic comparison. Assume that we deal

with lower case and upper case letters only. The

encoding of \sle| String Less or Equal | follows

the same ow as the equality test, \eq, but di�ers

in the test, because of T

E

X's expansion mechanisms

% #1, #2 are def's

\def\sle #1#2%

{\global\sletrue\global\eqtrue

{\continuetrue

\loop

\ifx#1\empty\continuefalse\fi

\ifx#2\empty\continuefalse\fi

\ifcontinue

\nxte#1\nxtt\nxte#2\nxtu

\ea\ea\ea\lle\ea\nxtt\nxtu

\repeat}

\ifeq\ifx\empty#2\ifx\empty#1

\else\global\slefalse\fi\fi

\fi}

with auxiliaries (\lle=Letter Less or Equal)

\newif\ifcontinue

\global\newif\ifsle

\global\newif\ifeq

\def\nxte #1#2%

{\def\pop##1##2\pop%

{\xdef#1{##2}%

\xdef#2{##1}}%

\ea\pop#1\pop}

\def\lle #1#2%

{\uppercase{\ifnum`#1=`#2}

\else\continuefalse\global\eqfalse

\uppercase{\ifnum`#1>`#2}{}

\global\slefalse\fi

\fi}

For example

\def\t{ABC} \def\u{ab} \sle\t\u

\ifsle$ABC\le ab$\else$ABC>ab$\fi

yields ABC > ab;

\def\t{aa} \def\u{a} \sle\t\u

\ifsle$aa\le a$\else$aa>a$\fi

yields aa > a;

\def\t{aa} \def\u{b} \sle\t\u

\ifsle$aa\le b$\else$aa>b$\fi

yields aa � b;

\def\t{noo} \def\u{apen} \sle\t\u

\ifsle$noo<apen$\else$noo>apen$\fi

yields noo > apen.

The above can be elaborated with respect to

\read for strings each on a separate �le, to

strings with accented letters, to the inclusion of

an ordering table, and in general to sorting. Some

of the mentioned items will be treated in Sorting in

BLUe, to come.

LIFO

A modi�cation of the \fifo macro| \process

{#1} invoked at the end instead of at the

beginning| will yield the LastInFirstOut template.

Of course LIFO can be applied to reversion on the

y, without explicitly allocating auxiliary storage.

17

\def\lifo #1#2\ofil%

{\ifx\empty#2\empty\ofil\fi%

\lifo#2\ofil\process#1}

\def\ofil #1\ofil{\fi}

The test for emptyness of the second argument

is similar to the T

E

Xnique used by Knuth in

\displaytest, The T

E

Xbook p. 376: \if!#3!....

With the identity |\def\process #1{#1}, or

the invoke \process #1 replaced by #1

18

| the

template can be used for reversion on the y

17: Johannes Braams drew my attention to Knuth

and MacKay (1987), which contained among others

\reflect ... \tcelfer. They compare #1 with

\empty, which is nice. The invocation needs an

extra token, \empty| a so-called sentinel, see Wirth

(1976) | to be included before \tcelfer, however.

(Knuth and Mackay hide this by another macro

which invokes \reflect... \empty\tcelfer). My

approach requires at least one argument, with the

consequence that the empty case must be treated

separately, or a sentinel must be appended after all.

18: Remember the stack size limitations.

1994 GUST, Zeszyt 4 25

For example \lifo aap\ofil yields paa.

19

Change of radix. In the The T

E

Xbook a LIFO

exercise is provided at p. 219: print the digits of

a number in radix 16 representation. The encoding

is based upon the property

d

k

= (N� r

k

) mod r; k = 0; 1; : : : ; n;

with radix r, coe�cients d

k

, and the number

representation

N =

n

X

k=0

d

k

r

k

:

There are two ways of generating the numbers d

k

:

starting with d

n

, or the simpler one starting with

d

0

, with the disadvantage that the numbers are

generated in reverse order with respect to printing.

The latter approach is given in The T

E

Xbook p. 219.

Adaptation of the LIFO template does not provide

a solution much di�erent from Knuth's, because the

numbers to be typeset are generated in the recursion

and not available in the input stream.

Further reading

Zalmstra and Rogers (1989), apply the FIFO

technique to a list of �gures | or oating bodies |

in order to merge the list appropriately with the

main vertical list in the output routine. This is

beyond the scope of this paper.

Acknowledgements

W lodek Bzyl and Nelson Beebe are kindly

acknowledged for their help in clearing up the

contents and correcting my use of English,

respectively.

Conclusion

In looking for a fundamental approach to process

elements sequentially| not to confuse with list

processing where the list is also built up, see

The T

E

Xbook Appendix D.2, or with processing of

every token in the input stream, see Exercise 11.5

or p. 376 | T

E

X templates for FIFO and LIFO

emerged.

The templates can be used for processing lines,

words or characters. Also processing of words line

19: Note that Knuth's test \if!\#3!... goes wrong

for #3 equals !, and similarly my use of the idea

goes wrong for #2 equals \empty, which is not

`empty.' Given the context those situations don't

occur, however.

by line, or characters word by word, can be handled

via nested use of the FIFO principle.

The FIFO principle along with the look ahead

mechanism is applied to molding natural data

into representations required by subsequent T

E

X

processing.

Courseware might bene�t from the FIFO

approach to unify answers of the exercises of the

macro chapter.

T

E

X's \ifx... and \if... conditionals are

non-commutative with respect to their �rst level

operands, while the similar mathematical operations

are, as are the operations in current high-level

programming languages.

Multiple FIFO, by comparing strings lexico-

graphically, has been touched upon.

References

[1] Arseneau D (1992): overcite.sty, drftcite.sty,

cite.sty. From the �le server.

[2] Eijkhout V (1991): T

E

X by Topic. Addison-

-Wesley.

[3] Fine, J (1992): Some basic control macros for

T

E

X. TUGboat 13, no. 1, 75{83.

[4] Hendrickson A (priv. comm.)

[5] Je�rey A (1990): Lists in T

E

X's mouth.

TUGboat 11, no. 2, 237{244.

[6] Kabelschacht A (1987): \expandafter vs. \let

and \def in conditionals and a generalization

of plain's \loop. TUGboat 8, no. 2, 184{185.

[7] Knuth D.E (1968): The Art of Computer

Programming. 1. Fundamental Algorithms.

Addison-Wesley.

[8] Knuth D.E (1984): The T

E

Xbook. Addison-

-Wesley.

[9] Knuth D.E, P Mackay (1987): Mixing rightto-

left texts with lefttoright texts. TUGboat 7,

no. 1, 14{25.

[10] Laan C.G van der (1990): Typesetting Bridge

via T

E

X. TUGboat 11, no. 2, 91{94. Also MAPS

91.2, 51{62.

[11] Laan C.G van der (1992a): Tower of Hanoi,

revisited. TUGboat 13, no. 1, 91{94. (Also

MAPS 92.1, 125{127.)

[12] Laan C.G van der (1992b): Typesetting

Crosswords via T

E

X. EuroT

E

X '92, 217{224.

(Also MAPS 92.1, 128{131.)

[13] Laan C.G van der (1992c): Table Diversions.

EuroT

E

X '92, 191{211. (Also a little adapted in

MAPS 92.2, 115{128. Macros on CTAN)

26 GUST, Zeszyt 4 1994

[14] Laan C.G van der (1992d): Typesetting

Crosswords via T

E

X, revisited. MAPS 92.2,

145{146. (Macros on CTAN.)

[15] Laan C.G van der (1992e): Syntactic Sugar.

MAPS92.2, 130-136. (Also TUG '93, TUG-

boat 14, no. 3, 310 { 318. Abridged GUST

bulletin 1.)

[16] Laan, C.G van der (1993): Typesetting number

sequences. MAPS 93.1, 145 { 148.

[17] Laan, C.G van der (1993): Sorting in BLUe.

MAPS 93.1, 149 { 170. (Abridged TUG '93,

TUGboat 14, no. 3, 319 { 328. For heap sort

coding in plain T

E

X, see MAPS92.2, 137{138.

Macros on CTAN.)

[18] Salomon D (1992): Advanced T

E

X course:

Insights & Hindsights, MAPS 92 Special.

�500p.

[19] Schwarz N (1987): Einf�uhrung in T

E

X.

Addison-Wesley.

[20] Tutelaers P (1992): A font and a style

for typesetting chess using L

A

T

E

X or T

E

X.

TUGboat 13, no. 1, 85{90.

[21] Wirth N (1976): Algorithms + Data Structures

= Programs. Prentice-Hall.

[22] Zalmstra J, D.F Rogers (1989): A page make-up

macro. TUGboat 10, no. 1, 73{81.

