Vis5D, Cave5D and VisAD

Bill Hibbard

University of Wisconsin - Madison

The SSEC (Space Science and Engineering Center) Visualization Project focuses on making advanced visualization techniques useful to scientists in their daily work. We accomplish this goal by making three scientific visualization systems, named Vis5D, Cave5D and VisAD, freely available over the Internet, and by using these systems as testbeds for exploring and evaluating new techniques. It is important to distinguish between scientists using advanced visualization techniques in their daily work, and using them to create demos.11 Use in ordinary work is the true measure of utility, whereas demos often focus on techniques that are merely new and dramatic. The systems described here are all freely available from the SSEC Visualization Project at http://www.ssec.wisc.edu/~billh/vis.html.

Vis5D

Vis5D grew out of work with the 4‑D McIDAS2, 3 system during the 1980’s, experimenting with animated three-dimensional displays of various types of environmental data. We wrote Vis5D5 in 1988 in response to three realities:

1.
Our experiments indicated that data from simulation models are much easier to visualize than observational data.

2.
Scientists do not trust depth information from binocular stereo. Instead, they need depth information from interactive 3‑D rotation.

3.
The Stellar and Ardent commercial workstations that appeared in 1988 were the first with sufficient graphics performance for interactive rotation and real-time animation of Gouraud-shaded 3‑D scenes.

The input data to Vis5D are time sequences of regular 3‑D grids of values for multiple variables, for example temperature, pressure and fluid motion vector components. Such data are typically generated by atmosphere and ocean simulation models, and also by models and instruments in a variety of other scientific disciplines. The system takes its name from the fact that its input data can be stored in a five-dimensional array, with three spatial dimensions, one time dimension, and one dimension for enumerating multiple variables.

Vis5D depicts scalar variables via iso-surfaces, contour curves embedded on horizontal and vertical planes, pseudo-colors on horizontal and vertical planes, and volume rendering. The volume rendering technique uses three sequences of transparent planes, one each with planes perpendicular to the X, Y and Z-axes. As the user rotates the view the system switches to the sequence for the axis most closely aligned with the view direction. This widely used technique was first developed for the 4‑D McIDAS.4 There is also an interactive point probe for scalar values, and an interactive vertical column probe used to generate traditional meteorological diagrams showing vertical thermodynamic structure. Vis5D depicts wind vectors via streamlines embedded on horizontal and vertical planes, particle trajectories, and vectors embedded on horizontal and vertical planes. Figure 1 shows some of these techniques combined in a single view, including:

1.
A yellow iso-surface of water vapor.

2.
A white volume rendering (i.e., transparent fog) of cloud water.

3.
White contour curves of potential temperature embedded on a vertical plane.

4.
A pseudo-color rendering of wind speed embedded on another vertical plane.

5.
Cyan wind parcel trajectories.

6.
A topographical map pseudo-colored by altitude and with embedded map boundaries.

All Vis5D rendering techniques are interactive. Users can interactively drag horizontal and vertical planes with the mouse, for any graphics embedded in planes. Particle trajectory paths are integrated forward and backward through time-varying vector fields, from points interactively selected by user mouse clicks. Users can interactively modify color tables for pseudo-colored graphics, including tables of transparency alpha values. Animation can be started, single-stepped and stopped, running either forward or backward in time. The view volume can be interactively rotated, panned and zoomed, and six clipping planes can be interactively dragged through the scene. Users also have interactive control over all sorts of numerical parameters of rendering techniques, including values for iso-surfaces, spacing of contour curves and streamlines, and length scaling of flow vectors and particle trajectories. Some types of graphical depictions of one variable can be pseudo‑colored according to values of other variables, including iso-surfaces, wind trajectories and map topography.

A rectangular palette of buttons dominates the Vis5D user interface, with a row for each scalar variable in the data set and a column for each of six basic scalar rendering techniques. Clicking on a button adds the depiction of the selected variable by the selected rendering technique to the 3‑D display. This may cause the system to compute the geometries (i.e., vectors, triangles and texture maps) for the rendering, if they are not already saved from a previous button click. Except for the volume rendering technique, which requires large amounts of memory, geometries are computed and saved for all time steps in the data set. This enables fast animation. It also enables users to click renderings of particular variables on and off quickly in the 3‑D scene, which can be very useful in cluttered scenes.

Memory management is a key problem for Vis5D and other interactive visualization systems. Interactive performance is best when the grids for all variables and all time steps can be held in memory simultaneously, along with the computed geometries for each rendering technique. System responses are delayed whenever grids must be read from disk or geometries must be recomputed. When Vis5D loads a data set, it computes the ratio of the data set size to the amount of available memory, and chooses one of three memory management strategies based on this ratio:

1.
If data set size is significantly less than available memory, then the entire data set is read into memory. When a variable and rendering technique are selected, the geometries for all time steps are computed and saved. If there is not enough memory to save the geometries, then the geometries for the least recently selected variable and rendering technique combination are discarded to make space for the new geometries.

2.
If data set size is many times larger than available memory, then grids are read from disk only as needed for computing geometries, and geometries are only computed and saved for the currently displayed time step. This strategy of course makes animation very slow, and is appropriate when Vis5D is running from a script and computing an animation file (e.g., MPEG or animated GIF) for later viewing.

3.
For data sets falling between the limits in cases 1 and 2, the system devotes part of available memory to a cache of grids, and devotes the rest of memory to saving geometries for all time steps for selected variables and rendering techniques. Grids and geometries are discarded from their caches on a least recently selected basis.

Vis5D uses a few other simple but important strategies for optimizing memory and performance:

1.
Grids are generally stored in a compressed format of one byte per grid value, which suffices for most types of data. Options for two bytes and four byte floats are available for data sets that need more precision.

2.
Geometries are stored compressed as scaled one and two-byte integers.

3.
When the user selects a variable and rendering technique for display, geometries are computed first for the currently displayed time step, then possibly computed for all other time steps.

4.
Vis5D maintains an internal work queue whose entries have the form: (variable, rendering technique, time step). On a symmetric (i.e., shared memory) multi-processor, Vis5D has one worker process per processor in order to exploit parallel processing. The worker processes remove entries from the work queue and compute appropriate rendering geometries from 3‑D grids.

Effective visualization requires information about the spatial and temporal locations of data, as well as names of variables, units for numerical values, a way of indicating missing values, and so on. These are called metadata. In 1988 there were no good standard file formats with adequate metadata for the 3‑D grids produced by weather and ocean simulation models. So we defined an internal file format for Vis5D that included necessary metadata and used Vis5D’s data compression technique. Modelers write programs for converting their model output into this Vis5D internal format, and we supply C and Fortran-callable libraries to make it easy.

The utility of visualization systems can be greatly enhanced by integrating data analysis operations. Vis5D includes capabilities to import data from various file formats into the Vis5D internal format, to resample grids spatially and temporally, to select a subset of variables from a file, and to merge data from multiple files. These capabilities are accessible both within a Vis5D visualization session, and by running smaller stand-alone programs. Operations for listing and editing the contents of grid files are also available as small stand-alone programs. Users can develop algorithms for deriving new grids from existing grids, either by simple formulas typed directly into the Vis5D user interface, or for more complex operations by writing Fortran functions that are dynamically linked to Vis5D.

Although weather modelers can apply the increasing power of computers for increasing spatial and temporal resolution of their simulations, they have recently found more utility from increased computing power by running a statistical ensemble of simulations, each with slightly perturbed initial conditions. These ensembles give them a way to estimate the range of possible future outcomes due to the instability of non-linear dynamics. Thus we added a capability to Vis5D for reading and displaying multiple data sets. These can be displayed side-by-side in a rectangular spreadsheet of 3‑D displays, as shown in Figure 2, or overlaid in the same 3‑D display. In the spreadsheet mode, the cells can be linked so they animate, rotate, pan and zoom in unison. Furthermore, selections of variables and rendering techniques made in one cell are mirrored in linked cells. While the capability to link displays of multiple 5‑D data sets would have justified changing the system’s name to Vis6D, we stuck with the well-known name Vis5D.

Vis5D also includes a rudimentary capability for overlaying displays of simulation data with images from satellites and radars, and with randomly located observations from balloons, surface weather stations, etc. However, the visualization problems of observational data are very different from simulation data. So most of our efforts in that direction have gone into the systematic approach in VisAD, described later in this chapter, rather than retrofitting them into Vis5D.

Vis5D is an open source system and has been freely available since 1989. In fact, it was probably the first open source visualization system. From the start users sent us modifications to fix bugs or add features they wanted. Furthermore, large institutions expressed an interest in using Vis5D but they wanted user interfaces that fit better with the look and feel of their own systems. In order to make Vis5D easier to modify, in 1995 we split the system into two parts separated by an API (application programming interface): a user interface part that calls the API functions and a data management and display part that implements those functions. This allows institutions to define custom user interfaces that call the Vis5D API for data management and display functions. The system also includes links to an interpreter for the TCL scripting language and defines TCL commands for invoking the Vis5D API functions. This enables users to write TCL scripts for running Vis5D non-interactively. These scripts are often triggered by the completion of model runs, and generate images and animations that are loaded onto ftp and web servers. Alternatively, Vis5D TCL scripts are sometimes created and triggered from web forms, with output images and animations returned to the web client. Vis5D also includes a mode in which it listens to a specified pipe file for the names of TCL script files, which it then executes.

Vis5D’s API and TCL scripts provide a wide variety of options for invoking its data management and display functions from other systems. These are being used by institutions such as NASA, the U.S. EPA, the U.S. Air Force, the U.S. Navy, the U.S. National Weather Service, the European Centre for Medium-range Weather Forecasts, China’s National Meteorological Center, and many others.

In the last few years Vis5D development has ceased at the SSEC Visualization Project. But it continues via the Vis5d+ project on SourceForge, the D3D project at the NOAA Forecast Systems Lab, the Cave5D system at Argonne National Lab, and many other derived systems. In the next section we describe Cave5D, an adaptation of Vis5D to immersive virtual reality.

Cave5D

Given its interactive 3‑D displays and its direct manipulation user interface, Vis5D is a natural for virtual reality. When Tom DeFanti and his collaborators at the University of Illinois - Chicago Electronic Visualization Lab developed their CAVE virtual reality system,1 we created Cave5D as a version of Vis5D for their CAVE. While demonstrating Cave5D at the Siggraph 94 VROOM, we met Glen Wheless and Cathy Lascara from Old Dominion University. They and we used Cave5D for demos at the Supercomputing 95 I-WAY.9,13 Figure 3 depicts a Cave5D display combining ocean and atmosphere data sets, from our I‑WAY demo. During our demo, user wand clicks in the CAVE in San Diego triggered requests to an SP-2 supercomputer at Argonne National Lab, which sent new model data back to San Diego for display in the CAVE (during the week of Supercomputing 95, bandwidth into the San Diego Convention Center was greater than bandwidth into Manhattan). After Supercomputing 95, we focused on VisAD and Old Dominion took over development of Cave5D. I felt that immersive virtual reality would remain primarily a demo tool rather than a daily-use tool for many years, and was happy to pass Cave5D on to Old Dominion.

User interface is a great challenge for virtual reality. Large arrays of buttons and sliders, and pop-up panels, don’t feel natural in virtual reality. But Vis5D users need those large numbers of widget choices, in addition to the direct manipulation choices like scene rotation, dragging planes and trajectory launch that do feel natural in virtual reality. Thus Cave5D has a modest array of buttons, such as seen in Figure 3, that hide many choices users would like to make. The Old Dominion folks added a script interpreter to Cave5D that enables users to easily specify many of the Vis5D widget choices from a start-up script. They also integrated Cave5D with the Virtual Director system of Donna Cox and Bob Paterson, in order to support collaboration between multiple CAVEs with Cave5D.

More recently, Sheri Mickelson and John Taylor of Argonne National Lab took over support of Cave5D from Old Dominion. Cave5D has undoubtedly become the most widely used visualization software system for immersive virtual reality.

VisAD

Observational data is much more challenging than simulation data for visualization and analysis. To address this challenge, VisAD (the name stands for Visualization for Algorithm Development) is designed to deal with virtually any numerical and text data, to produce virtually any type of data depiction, to integrate interactive analyses with visualization, and to work with arbitrarily distributed computing resources.10 It is written in pure Java (except for its use of the HDF libraries which don’t support Java) because Java is a language designed for a distributed environment. It is a component library defining five basic kinds of components (names of Java classes, interfaces and objects are in italics):

1.
Data components: these may be simple real numbers, may be text strings, may be vectors of real numbers and other values, may be sets in real vector spaces, may be functions from real vector spaces to other data spaces, or may be complex combinations of these. They are mostly immutable in order to ensure thread-safeness. The exception is that range values of functions can be changed (e.g., changing pixel intensities in an image) without replacing the entire function.

2.
Display components: these contain visual depictions of one or more linked Data components. These may be 2-D or 3-D, may be a window on the screen or in a browser, or may be in an immersive virtual reality system. Display components update data depictions in response to changes in linked Data components.

3.
Cell components: these execute user-defined computations in response to changes in linked Data components (the name Cell is taken from spreadsheets).

4.
DataReference components: these are mutable components used to connect Display and Cell components to Data components, which are often immutable. In "X = 3" the number 3 is immutable and plays the Data role, whereas X is mutable (i.e., it can be changed to a value other than 3) and plays the DataReference role.

5.
User interface components: these are traditional GUI (graphical user interface) widgets typically linked to Data or Display components.

Display and Cell components can be linked with DataReference (and hence with referenced Data) components on remote machines, via Java RMI (Remote Method Invocation) distributed object technology. This facilitates collaborative visualization, in which a DataReference component on one machine is linked to Display components on the geographically distributed machines of multiple users. RMI is also used to enable applications to link groups of Display components on different machines, so interactive changes in any are reflected in all.

The core of VisAD’s design is its data model, which is a mathematical description of the set of valid Data components. The data model grew out of our experience with a great variety of scientific data, and out of the Siggraph 1990 Workshop on Data Structure and Access Software for Scientific Visualization, organized by Lloyd Treinish.12 Participants included people who played leading roles in the development of AVS, IBM Data Explorer, HDF, netCDF, DOE CDM and VisAD.

Data components contain numerical and text values, plus metadata. The primary metadata is a data schema, in VisAD’s MathType class, that defines names for primitive numerical and text values occurring in data, the way values are grouped into vectors, and functional dependencies among values. For example, a satellite image of Earth may be described as a functional dependence of radiance on pixel line and element coordinates, via the MathType (using the system’s string representations for MathTypes):

((line, element) -> radiance)

This function is approximated by a finite sampling at discrete pixels. The sampling metadata of a function may be a regular or irregular set in a real vector space (typical image sampling is an integer lattice in the 2‑D space with coordinates line and element). This function may also include metadata describing Earth locations of pixels via an invertible coordinate transform:

(line, element) <--> (latitude, longitude)

Any real values may include units. For example latitude and longitude values may have units of degrees or radians. Function range values such as radiance may include metadata indicating missing values (caused by instrument or computational failures), or metadata defining estimates of errors.

A time sequence of images may have the MathType:

(time -> ((line, element) -> radiance))

This function will define some finite sampling of time values, and may define units for time such as seconds since 1 January 1970.

A set of map boundaries may be described using the MathType:

set(latitude, longitude)

VisAD defines various classes for sets in real vector spaces, for regular and irregular topologies, for different domain dimensions, and for sets restricted to sub-manifolds with smaller dimension than their domains. For example, a set of map boundaries lies in a one-dimensional sub-manifold of a two-dimensional domain.

A more formal definition of the VisAD data model is provided by the MathType grammar:

 MathType

:= ScalarType | TupleType | SetType | FunctionType
 ScalarType

:= RealType | TextType
 RealType

:= name

 TextType

:= name

 TupleType

:= (MathType , MathType , ..., MathType)

 TupleType

:= RealTupleType
 RealTupleType
:= (RealType , RealType , ..., RealType)

 SetType

:= set (RealTupleType)

 FunctionType
:= (RealTupleType -> MathType)

Any RealType may have associated Unit and ErrorEstimate objects, and may be marked as missing. Any RealTupleType may have an associated CoordinateSystem object, defining an invertible transform to a reference RealTupleType. Any RealTupleType occurring in a FunctionType domain may have an associated finite sampling defined by a Set object. Unit conversions, coordinate transforms and resampling are done implicitly as needed during computation and visualization operations on Data components, and missing data and error estimates are propagated in computations. This data model has proved robust for dealing with a wide variety of application requirements.

VisAD defines an architecture for interfacing its data model to various file formats and data server APIs. This architecture presents applications with a view of a file (logical file in the case of a server API) as a VisAD Data component. The architecture has been implemented for a number of commonly used scientific file formats and server APIs, including netCDF, HDF, FITS, BioRad, McIDAS, Vis5D, DODS and others. In some cases, entire files are read and used to create memory resident Data components. But the architecture also includes support for format interfaces that transfer file data between disk and a memory cache as needed. Data transfers to the cache are implicit in application access to methods of the created Data component, and hence transparent to applications.

The depictions of Data components linked to a Display component are defined by a set of ScalarMap objects linked to the Display. These are mappings from RealTypes and TextTypes to what are called DisplayRealTypes. For example, the depiction of a time sequence of images and a map boundary overlay in Figure 4 is determined by the ScalarMaps:

time -> Animation

latitude -> YAxis

longitude -> XAxis

radiance -> RGB

Note the GUI widgets in Figure 4 that allow the user to control time animation and the RGB color lookup table for radiance values. Each ScalarMap object has an associated Control object that provides a means to specify animation, color tables, contouring, flow rendering, 3-D to 2-D projection, and other parameters of its associated DisplayRealType. These Control objects can be linked to GUI widgets as in Figure 4, or may be manipulated by computations.

The system’s intrinsic DisplayRealTypes include: XAxis, YAxis, ZAxis, Latitude, Longitude, Radius, CylRadius, CylAzimuth, CylZAxis, XAxisOffset, YAxisOffset, ZAxisOffset (offset values are added to spatial coordinates), Red, Green, Blue, RGB (pseudo-color), RGBA (pseudo-color with transparency), Hue, Saturation, Value, HSV (pseudo-color to hue, saturation and value), Cyan, Magenta, Yellow, CMY (pseudo-color to cyan, magenta and yellow), Alpha, Flow1X, Flow1Y, Flow1Z, Flow2X, Flow2Y, Flow2Z (note two sets of flow coordinates), Flow1Elevation, Flow1Azimuth, Flow1Radial, Flow2Elevation, Flow2Azimuth, Flow2Radial (and two sets of spherical flow coordinates), Animation, SelectValue (values not equal to a specified value are treated as missing in the depiction), SelectRange (values not in a specified range are treated as missing in the depiction), IsoContour, Text, Shape (values are sampled and used as indices into an array of icons), ShapeScale, LineWidth, PointSize and LineStyle. System implementations for these DisplayRealTypes include just about every visualization technique.

ScalarMaps for some DisplayRealTypes (e.g., XAxis, RGB) allow applications to control the linear mapping from primitive numerical data values to DisplayRealType values (e.g., a graphic coordinate in the case of XAxis, and a lookup table index in the case of RGB). If applications don't specify this mapping, then a system auto-scaling algorithm determines an optimal default mapping to keep data depictions visible (e.g., to ensure that longitude and latitude values are mapped to XAxis and YAxis values that are within the display screen).

ConstantMaps, which bind constant values to DisplayRealTypes, may be linked to Display components in just the way that ScalarMaps are. These allow applications to override default values for DisplayRealTypes, for example to control locations and colors of data depictions when they are not determined by ScalarMaps of any RealTypes or TextTypes occurring in the data.

The generation of data depictions is automated based on an analysis of MathTypes, ScalarMaps and other metadata. However, the system provides a way for applications to redefine that analysis and display generation. When a Data component is linked to a Display component, an object of a sub-class of DataRenderer is used to analyze MathTypes, ScalarMaps and other metadata, and generate the depiction. There is a default sub-class for each supported graphics API (e.g., Java3D and Java2D), and these defaults can generate a visual depiction for just about any Data object and set of ScalarMaps. But applications have the option of defining and using non-default sub-classes of DataRenderer, and may also add new DisplayRealTypes to describe parameters of those DataRenderer classes.

One important property of VisAD is that some of its DataRenderer sub-classes not only transform data into depictions, but also invert the transform to translate user gestures on the depiction back into data changes. The default DataRenderer sub-classes do not translate user gestures into data changes, because in the general case of MathTypes and ScalarMaps there is no reasonable way to interpret user gestures as data changes. However, the VisAD system includes a number of non-default DataRenderer sub-classes that do translate user gestures into data changes, and applications are free to define more. These first analyze a MathType and a set of ScalarMaps to make sure they are consistent with an interpretation of user gestures as data changes, and then implement that interpretation. For example, a Data component with MathType:

(latitude, longitude, altitude)

linked to a Display component with linked ScalarMaps:

latitude -> YAxis

longitude -> XAxis

altitude -> ZAxis

will generate a data depiction as a simple point in 3-D display space, and allow the user to modify data values by dragging the point. An analysis by an object of the DirectManipulationRendererJ3D class verifies and implements this way of interpreting gestures.

Figure 5 shows a display of a simple conical terrain surface in a 3-D box, with two large yellow points at opposite corners of the box. The yellow points are depictions of two 3‑vector Data components linked to the Display component via objects of class DirectManipulationRendererJ3D, as described in the previous paragraph. These 3‑vectors are linked to trigger the computation of a Cell component that modifies the linear mappings associated with the ScalarMaps for display spatial coordinates in order to keep the depictions of the two 3‑vectors at the corners of the display box. This little network of Data, Display and Cell components and DirectManipulationRendererJ3D objects defines an embedded 3-D GUI component for rescaling 3-D display space.

As another example, in spatial data analysis applications it is often useful to apply analysis operations to restricted spatial regions. These regions may be defined in the data, for example within a map boundary, or may be defined by users based on their judgement. For user definition we need a GUI component that enables users to draw the outlines of regions as freehand curves. In VisAD, the CurveManipulationRendererJ3D class serves this purpose. It is a sub-class of DataRenderer that requires a Data component with MathType of the form:

Set(x, y)

It also requires ScalarMaps of x and y to spatial DisplayRealTypes. These may be two of XAxis, YAxis and ZAxis, or they may be two coordinates in a non-Cartesian spatial coordinate system. The Data component will lie on a one-dimensional manifold embedded in the two-dimensional domain with coordinates x and y. User mouse movements are interpreted as samples along one-dimensional curves in (x, y) space. According to the ScalarMaps, the curve is embedded on a two-dimensional manifold in 3-D display space. Figure 6 is a snapshot of a curve being drawn on the two-dimensional manifold on the surface of a sphere. In this case, the ScalarMaps are:

x -> Longitude

y -> Latitude

Along with Radius these DisplayRealTypes define a 3-D spherical display coordinate system:

(Latitude, Longitude, Radius)

When a DataReference object is linked to a Display component, a number of ConstantMaps may be included which are applied only to the depiction of the referenced Data component. In the example in Figure 6, a ConstantMap to Radius is used to specify which sphere defines the 2-D manifold where curves are drawn.

Applications can use CurveManipulationRendererJ3D for drawing on a nearly arbitrary 2-D sub-manifold of 3-D display space, by defining three DisplayRealTypes for a new coordinate system and defining a coordinate transform between these and Cartesian display coordinates (XAxis, YAxis, ZAxis). The 2-D sub-manifold is defined by a ConstantMap that fixes the value of one of these DisplayRealTypes, and by ScalarMaps of x and y to the other two. This 3-D GUI component can be used for freehand drawing in a wide variety of different applications.

These examples illustrate the robust way that networks of VisAD components can be adapted to application requirements. Furthermore, many VisAD classes are designed to be extended, in order to meet almost any visualization requirements. These include:

1.
The Set class may be extended to define new sampling topologies of real vector spaces, and to define new interpolation algorithms.

2.
The CoordinateSystem class may be extended to define new coordinate transformation algorithms.

3.
New implementation classes for the Function interface (this is a sub-interface of Data corresponding to the FunctionType sub-class of MathType) can provide non-sampled approximations to functional dependencies, such as procedural definitions or harmonic sequences. Note that sampled approximations are classes implementing the Field interface (a sub-interface of Function).

4.
New implementation classes for the Form interface define interfaces of the VisAD data model to new file formats and data server APIs.

5.
New implementation classes for the Cell component interface can be used to include application-defined computations in a network of VisAD components.

6.
The DataRenderer class may be extended to customize the way that visual depictions are generated from Data components, including the interpretation of user gestures as data changes.

7.
Various Display component classes may be extended to include implementations for new graphics APIs (the system includes implementations for the Java3D and Java2D APIs, and we are contemplating an implementation for the GL4Java API), or to adapt existing graphic APIs to new modes such as immersive virtual reality (this has been done for the ImmersaDesk using the Java3D API).

In a recent development, a set of extensions of classes for Data and Display components have been defined to support visualization of large data sets distributed across the processors of a cluster. A large Data component is distributed by a partition of the samples of a Field across cluster processors. The partitioned Field does not have to be the top level of the Data component, but may be occur as part of a containing Data organization. For example, large 3‑D grids from a weather model may be partitioned into sets of rectangles in latitude and longitude, with these 3‑D grids occurring as parts of larger time sequence Data components. This example corresponds to the way that weather models are usually partitioned across clusters, so defining Data components this way allows weather model output data to be visualized in place where it is computed. A Data component on the user’s visualization client connects via Java RMI to a set of Data components on the cluster processors, that hold the actual data values (which may be stored on disk via the caching architecture of a file format interface), and a DataRenderer object (its actual class is of course a sub-class of DataRenderer) on the user’s visualization client connects via Java RMI to a set of DataRenderer objects on the cluster processors. Then visualization computations, such as iso-surface generation, are initiated from the visualization client but the actual computations are distributed across the processor nodes. In order to prevent the generated geometries from swamping the memory of the visualization client, it may request different rendering resolutions from different cluster processors. This enables users to visualize the overall data set at low resolution, but to zoom into the data on any processor at full resolution. Because this cluster implementation is just another set of VisAD class extensions, it has the full generality of the VisAD data model and of VisAD’s ScalarMaps for display definition. Furthermore, this approach makes it trivial to overlay depictions of large cluster data with depictions of data from other sources, such as geographical reference maps.

The VisAD library includes an interface to the Jython interpreter for Python, Java method implementations that make VisAD data operations accessible via infix syntax from Python expressions, and a variety of Python functions implementing specialized graphics (e.g., histograms, scatter plots, image animation, etc) via VisAD’s components. The goal of this ongoing effort is to provide an easy way to use VisAD from Python scripts, so scientists and casual users don’t have to learn Java.

The VisAD library is used by a number of widely used visualization applications. One, the VisAD SpreadSheet, is distributed as part of the system. It is a general-purpose application that enables users to read files and perform simple computation and visualization operations. It includes a user interface for creating ScalarMaps and setting parameters in associated Controls (this user interface is also accessible from Python). The VisAD SpreadSheet is fully collaborative: users at different workstations can share the same displays and user interfaces, where interactions by one are shared by all.

VisAD supports more specialized applications for earth science, biology, astronomy and economics. The Unidata Program Center’s Integrated Data Viewer (IDV) enables users to fuse environmental data from different servers and from different types of data sources (satellites, simulation models, radars, in situ observations, etc) in displays with common geographical and temporal frames of reference. The IDV is being used for the NSF-supported Digital Library for Earth Science Education (DLESE), and a prototype environmental modeling project at the National Computational Science Alliance (NCSA). The Australian Bureau of Meteorology is using VisAD as the basis for their Tropical Cyclone and Automated Marine Forecast systems, and considering it as the basis for all its visualization applications. Ugo Taddei of the University of Jena is using VisAD to develop a number of hydrology applications. The National Center for Atmospheric Research (NCAR) is using VisAD as the basis of its Visual Meteorology Tool (VMET). The University of Wisconsin (UW) is developing a variety of applications for visualizing and analyzing data from hyper-spectral (typically generating several thousand spectral bands) atmospheric observing instruments.

VisBio is a biological application of VisAD, being developed by Curtis Rueden and Kevin Eliceiri under the direction of John White in his UW Laboratory for Optical and Computational Instrumentation. Figure 7 shows a VisBio volume rendering of a live C. elegans embryo stained with a fluorescent membrane probe, and Figure 8 shows 3‑D and 4‑D measurements with VisBio quantitating movement of mitochondria in different regions of a two-photon dataset of a two-cell hamster embryo labeled with a mitochondria-specific dye. The NuView system uses VisAD to enable astronomers to visualize events from the AMANDA and IceCube neutrino detectors. There is a close collaboration among all the groups developing scientific applications of VisAD.

Acknowledgements

Marie-Francoise Voidrot, Andre Battaiola and Dave Santek helped with the early development of Vis5D. Brian Paul did most Vis5D development starting in 1992, including development of Cave5D. Brian developed Mesa on his own while working in the SSEC Visualization Project, as an improvement over an earlier freeware implementation of OpenGL used by Vis5D. Johan Kellum took over most Vis5D development starting in 1997. Phil McDonald contributed changes to Vis5D that he made for the D3D system.

Charles Dyer supervised my University of Wisconsin Computer Sciences Ph.D. about the VisAD system.8 Brian Paul helped with the first implementation of VisAD, in C.6,7 John Anderson and Dave Fulker contributed major ideas to the Java implementation of VisAD. Curtis Rueden, Steve Emmerson, Tom Rink, Dave Glowacki, Tom Whittaker, Don Murray, James Kelly, Andrew Donaldson, Jeff McWhirter, Peter Cao, Tommy Jasmin, Nick Rasmussen and Doug Lindholm helped write the Java implementation of VisAD. Ugo Taddei created the on-line VisAD tutorial.

References

1.
Cruz-Neira, C., D. J. Sandin, and T. A. DeFanti, 1993. Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE. Proc. Siggraph '93, ACM Siggraph, 135-142.

2.
Hibbard, W., 1986. 4-D display of meteorological data. Proceedings, 1986 Workshop on Interactive 3D Graphics. Chapel Hill, ACM Siggraph, 23-36.

3.
Hibbard, W., and D. Santek, 1989. Visualizing large data sets in the earth sciences. IEEE Computer 22(8), 53-57.

4.
Hibbard, W., and D. Santek, 1989. Interactivity is the key. Chapel Hill Workshop on Volume Visualization, University of North Carolina, Chapel Hill, 39-43.

5.
Hibbard, W., and D. Santek, 1990. The Vis5D system for easy interactive visualization. Proc. Visualization '90, San Francisco, IEEE. 28-35.

6.
Hibbard, W., C. Dyer and B. Paul, 1992. Display of scientific data structures for algorithm visualization. Proc. Visualization '92, Boston, IEEE, 139-146.

7.
Hibbard, W., C. Dyer and B. Paul, 1994. A lattice model for data display. Proc. Visualization '94, Washington, IEEE, 310-317.

8.
Hibbard, W., 1995. Visualizing Scientific Computations: A System based on Lattice-Structured Data and Display Models. PhD Thesis. Univ. of Wisc. Comp. Sci. Dept. Tech. Report #1226.

9.
Hibbard, W, J. Anderson, I. Foster, B. Paul, R. Jacob, C. Schafer, and M. Tyree, 1996. Exploring Coupled Atmosphere-Ocean Models Using Vis5D. Int. J. of Supercomputer Applications, 10(2), 211-222.

10.
Hibbard, W., 1998. VisAD: Connecting people to computations and people to people. Computer Graphics, 32(3), 10-12.
11.
Hibbard, W. Confessions of a Visualization Skeptic. Computer Graphics 34(3), 11-13. 2000.

12.
Treinish, L. A., 1991; SIGGRAPH '90 workshop report: data structure and access software for scientific visualization. Computer Graphics 25(2), 104-118.

13.
Wheless, G. H., C. M. Lascara, A. Valle-Levinson, D. P. Brutzman, W. Sherman, W. L. Hibbard, and B. E. Paul, 1996. Virtual Chesapeake Bay: interacting with a coupled physical/biological model. IEEE Computer Graphics and Applications, 16(4), 52-57.
FIGURE CAPTIONS

Figure 1. A Vis5D display combining terrain, iso-surface, volume rendering, particle trajectories, pseudo-coloring and contour curves.

Figure 2. A Vis5D spread sheet of four members of an ensemble forecast from the European Centre for Medium-range Weather Forecasts.

Figure 3. A planar simulation of a Cave5D virtual reality display of coupled atmosphere and ocean simulations used for a demo at the Supercomputing 95 Conference.

Figure 4. A VisAD display combining a GOES satellite image with map boundaries.

Figure 5. A simple demonstration of using VisAD to build embedded 3‑D user interface components: dragging the two large yellow points causes the display to rescale to keep the yellow points at opposite box corners.

Figure 6. A more complex embedded user interface component built using VisAD: the user can draw free hand curves on the sphere’s surface.

Figure 7. The VisBio system using VisAD for volume rendering of a live C. elegans embryo stained with a fluorescent membrane probe. Imaging done by Dr. William Mohler, UConn Health Center.

Figure 8. The VisBio system using VisAD for 3‑D and 4‑D measurements quantitating movement of mitochondria in different regions of a two-photon dataset of a two-cell hamster embryo labeled with a mitochondria-specific dye. Imaging done by Dr. Jayne Squirrell, UW-Madison.

