Python/C API Reference Manual
Release 1.5.2

Guido van Rossum

April 30, 1999

Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA
E-mail: guido@CNRI.Reston.Va.US, guido@python.org

Copyright(© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The Netherlands.
All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the names of Stichting Mathematisch Centrum
or CWI or Corporation for National Research Initiatives or CNRI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

While CWI is the initial source for this software, a modified version is made available by the Corporation for National
Research Initiatives (CNRI) at the Internet addrigssftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LIABLE FOR ANY SPECIAL, IN-
DIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Abstract

This manual documents the API used by C (drt{programmers who want to write extension modules or embed
Python. It is a companion tBxtending and Embedding the Python Interpretenich describes the general principles
of extension writing but does not document the API functions in detail.

Warning: The current version of this document is incomplete. | hope that it is nevertheless useful. | will continue to
work on it, and release new versions from time to time, independent from Python source code releases.

9

CONTENTS

Introduction

1.1 Include Files. e e
1.2 Objects, Typesand Reference Counts i ittt
1.3 EXCEPLiONS. o e e e e e
1.4 Embedding Python e
The Very High Level Layer

Reference Counting

Exception Handling

4.1 Standard EXCeptions e e e
Utilities

5.1 OSULIIIES o e e e
5.2 ProcessControl. e
5.3 Importing Modules e e e e
Abstract Objects Layer

6.1 ObjectProtocol e
6.2 Number Protocol e e
6.3 Sequence Protocal e
6.4 Mapping Protocol.
6.5 CONSHIUCIOIS. o o e e e e e e
Concrete Objects Layer

7.1 Fundamental Objects.
7.2 Sequence Objects.
7.3 Mapping Objects e e e
7.4 Numeric ObJEeCtS. e e e
7.5 OtherObjects e e e

Initialization, Finalization, and Threads
8.1 Thread State and the Global InterpreterLack

Defining New Object Types

10 Debugging

Index

11

13
15

17
17
17
17

21
21
23
24
25
26

27
27
27
30
31
33

35
38

43

45

a7

CHAPTER
ONE

Introduction

The Application Programmer’s Interface to Python gives C ahd frogrammers access to the Python interpreter at

a variety of levels. The API is equally usable fromt-€ but for brevity it is generally referred to as the Python/C

API. There are two fundamentally different reasons for using the Python/C API. The first reason is &xtetitgion
modulesfor specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to a@mbeddindPython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward that writing an extension. Python 1.5
introduces a number of new API functions as well as some changes to the build process that make embedding much
simpler. This manual describes the 1.5.2 state of affairs.

Many API functions are useful independent of whether you're embedding or extending Python; moreover, most ap-
plications that embed Python will need to provide a custom extension as well, so it's probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headersstdio.h> , <string.h> , <errno.h> , and
<stdlib.h> (if available).

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py’ or ‘ _Py’. Names beginning with_‘Py’ are for internal use only. Structure member names do not have
a reserved prefix.

Important: user code should never define hames that begin VAth or ‘ _Py’. This confuses the reader, and
jeopardizes the portability of the user code to future Python versions, which may define additional names beginning
with one of these prefixes.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value Bfy9pgect * . This type

is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated
the same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is
only fitting that they should be represented by a single C type. All Python objects live on the heap: you never declare
an automatic or static variable of typgObject , only pointer variables of typByObject * can be declared.

All Python objects (even Python integers) hawg@eand areference countAn object’s type determines what kind of
objectitis (e.g., an integer, a list, or a user-defined function; there are many more as explainéyithdneReference
Manual). For each of the well-known types there is a macro to check whether an object is of that type; for instance,
‘PyList _Check(a) ' is true iff the object pointed to bg is a Python list.

Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or
a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero,
the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an
obvious problem with objects that reference each other here; for now, the solution is “don’t do that”.)

Reference counts are always manipulated explicitly. The normal way is to use thePya¢dlCREF() to increment

an object’s reference count by one, @yd DECREF() to decrement it by one. The decref macro is considerably more
complex than the incref one, since it must check whether the reference count becomes zero and then cause the object’s
deallocator, which is a function pointer contained in the object’s type structure. The type-specific deallocator takes
care of decrementing the reference counts for other objects contained in the object, and so on, if this is a compound
object type such as a list. There’s no chance that the reference count can overflow; at least as many bits are used to
hold the reference count as there are distinct memory locations in virtual memory (assimaiviglong) >=

sizeof(char *)). Thus, the reference count increment is a simple operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python
code which could do this; there is a code path which allows control to flow back to the user RgnDECREF(),

so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name beginBy@itjett _’,
‘PyNumber_’, ‘PySequence _' or ‘PyMapping _’). These operations always increment the reference count of
the object they return. This leaves the caller with the responsibility tdPyalDECREF() when they are done with
the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best expelained in teomeerkhip of references
Note that we talk of owning references, never of owning objects; objects are always shared! When a function owns

2 Chapter 1. Introduction

a reference, it has to dispose of it properly — either by passing ownership on (usually to its caller) or by calling
Py_DECREF() or Py_XDECREF(). When a function passes ownership of a reference on to its caller, the caller is
said to receive aewreference. When no ownership is transferred, the caller is s&idrtow the reference. Nothing
needs to be done for a borrowed reference.

Conversely, when calling a function passes it a reference to an object, there are two possibilities: the function
stealsa reference to the object, or it does not. Few functions steal references; the two notable exceptions are
PyList _Setltem() andPyTuple _Setltem() , which steal a reference to the item (but not to the tuple or

list into which the item is put!). These functions were designed to steal a reference because of a common idiom for
populating a tuple or list with newly created objects; for example, the code to create théliuf@e "three")

could look like this (forgetting about error handling for the moment; a better way to code this is shown below anyway):

PyObiject *t;

t = PyTuple_New(3);

PyTuple_Setitem(t, 0, PyInt_FromLong(1L));
PyTuple_Setitem(t, 1, PyInt_FromLong(2L));
PyTuple_Setltem(t, 2, PyString_FromString(“three"));

Incidentally, PyTuple _Setltem() is theonly way to set tuple itemsPySequence _Setltem() and Py-
Object _Setltem() refuse to do this since tuples are an immutable data type. You should onlyydse
ple _Setltem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written udiydist _New() andPyList _Setltem() . Such code
can also us®ySequence _Setltem() ; this illustrates the difference between the two (the eRyaDECREF()
calls):

PyObject *I, *x;

| = PyList_New(3);

X = PyInt_FromLong(1L);
PySequence_Setltem(l, 0, x); Py_DECREF(x);
X = Pylnt_FromLong(2L);
PySequence_Setltem(l, 1, x); Py_DECREF(x);
x = PyString_FromString("three");
PySequence_Setltem(l, 2, x); Py_DECREF(x);

You might find it strange that the “recommended” approach takes more code. However, in practice, you will rarely
use these ways of creating and populating a tuple or list. There’s a generic fuistioBuildValue() , that can

create most common objects from C values, directed foyraat string For example, the above two blocks of code
could be replaced by the following (which also takes care of the error checking):

PyObject *t, *I;

Py_BuildValue("(iis)", 1, 2, "three");

t
I Py_BuildValue("fiis]", 1, 2, "three");

It is much more common to udeyObject _Setltem() and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

1.2. Objects, Types and Reference Counts 3

int set_all(PyObject *target, PyObject *item)
{

int i, n;

n = PyObject_Length(target);
if (n < 0)
return -1,
for (i = 0; i < n; i++) {
if (PyObject_Setltem(target, i, item) < 0)
return -1;

}

return O;

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a referece to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject _Getltem() andPySequence _Getltem() , always return a new reference (i.e., the caller becomes

the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only —the plumagdi.e., the type of the type of the object passed as an argument to the furdiigsn)'t enter into

it! Thus, if you extract an item from a list usiiRyList _Getltem() , you don’t own the reference — but if you
obtain the same item from the same list usihgsequence _Getltem() (which happens to take exactly the same
arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
usingPyList _Getltem() , once using’ySequence _Getltem()

long sum_list(PyObject *list)

{ . .
int i, n;
long total = O;
PyObject *item;
n = PyList_Size(list);
if (n <0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_Getltem(list, i); /* Can't fail */
if (IPyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);
}
return total;
}

4 Chapter 1. Introduction

long sum_sequence(PyObject *sequence)
{ . .
int i, n;
long total = O;
PyObject *item;
n = PyObject_Size(list);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_Getltem(list, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */
}

return total;

Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as
int ,long , double andchar * . A few structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type. These will be discussed together with the functions
that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, till they reach the top-level interpreter,
where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator
— usuallyNULL or -1 . A few functions return a Boolean true/false result, with false indicating an error. Very few
functions return no explicit error indicator or have an ambiguous return value, and require explicit testing for errors
with PyErr _Occurred()

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded appli-
cation). A thread can be in one of two states: an exception has occurred, or not. The fiy&ron_Occurred()

can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, andNULL otherwise. There are a number of functions to set the exception Bygr _SetString()

is the most common (though not the most general) function to set the exception sta®yEand Clear() clears

the exception state.

The full exception state consists of three objects (all of which caNUEL): the exception type, the correspond-

ing exception value, and the traceback. These have the same meanings as the Pythsyabject _type ,

sys.exc _value , sys.exc _traceback ; however, they are not the same: the Python objects represent the last
exception being handled by a Pythtty ... except statement, while the C level exception state only exists while

an exception is being passed on between C functions until it reaches the Python interpreter, which takes care of trans-
ferring it tosys.exc _type and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is

1.3. Exceptions 5

to call the functionsys.exc _info() , which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and returns an error indicator, but it shawdtset another exception — that would overwrite the exception

that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shownsarthesequence() example above.

It so happens that that example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dictlkey]
except KeyError:
item = 0
return item + 1

Here is the corresponding C code, in all its glory:

6 Chapter 1. Introduction

int incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py _XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_Getltem(dict, key);
if (tem == NULL) {
/* Handle KeyError only: */
if (IPyErr_ExceptionMatches(PyExc_KeyError)) goto error;

[* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong(OL);
if (item == NULL) goto error;
}

const_one = Pyint_FromLong(1L);
if (const_one == NULL) goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL) goto error;

if (PyObject_Setltem(dict, key, incremented_item) < 0) goto error;
rv = 0; /* Success */
/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py XDECREF() to ignore NULL references */
Py_XDECREF(item);

Py_XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, O for success */

This example represents an endorsed use of dbeo statement in C! It illustrates the use d?y-

Err _ExceptionMatches() and PyErr _Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that mayNidLL (note the X' in the name;Py_DECREF()
would crash when confronted withNULL reference). It is important that the variables used to hold owned references
are initialized toNULL for this to work; likewise, the proposed return value is initializedto(failure) and only set

to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter
can only be used after the interpreter has been initialized.

The basic initialization function iBy _Initialize() . This initializes the table of loaded modules, and creates the
fundamental modules_builtin -~ __, __main __andsys . It also initializes the module search paslyg.path).
Py _Initialize() does not set the “script argument lissyg.argv). If this variable is needed by Python code

1.4. Embedding Python 7

that will be executed later, it must be set explicitly with a calPySys _SetArgv(argc, argv) subsequent to the
call to Py_Initialize()

On most systems (in particular, on NiX and Windows, although the details are slightly different),

Py _Initialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python
interpreter executable. In particular, it looks for a directory naniiegbython1.5’ (replacing ‘1.5’ with the current in-
terpreter version) relative to the parent directory where the executable ngyitenh® is found on the shell command
search path (the environment variable $PATH).

For instance, if the Python executable is found /msr/local/bin/python’, it will assume that the libraries are in
‘lusr/local/lib/python1.5’. (In fact, this particular path is also the “fallback” location, used when no executable file
named python’ is found along $PATH.) The user can override this behavior by setting the environment variable
$PYTHONHOME, or insert additional directories in front of the standard path by setting $SPYTHONPATH.

The embedding application can steer the search by callygSetProgramName(file) before calling

Py _Initialize() . Note that SPYTHONHOME still overrides this and $PYTHONPATH is still inserted in
front of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath() , Py_GetPrefix() , Py_GetExecPrefix() , Py_GetProgramFullPath() (all defined

in ‘Modules/getpath.c’).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another
call toPy_lInitialize()) or the application is simply done with its use of Python and wants to free all memory al-
located by Python. This can be accomplished by calggFinalize() . The functionPy _lIsInitialized()

returns true iff Python is currently in the initialized state. More information about these functions is given in a later
chapter.

8 Chapter 1. Introduction

CHAPTER
TWO

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

int PyRun_AnyFile (FILE *fp, char *filenamé
If fp refers to a file associated with an interactive device (console or terminal inputior pseudo-terminal),
return the value oPyRun_lInteractiveLoop() , otherwise return the result 8Run_SimpleFile()
If filenameis NULL, use"???" as the filename.

int PyRun_SimpleString (char *commangl
Executes the Python source code froommandn the __main __ module. If __main __ does not already
exist, it is created. Returrson success ol if an exception was raised. If there was an error, there is no way
to get the exception information.

int PyRun_SimpleFile (FILE *fp, char *filenam¢
Similar to PyRun_SimpleString() , but the Python source code is read fréminstead of an in-memory
string. filenameshould be the name of the file.

int PyRun_InteractiveOne (FILE *fp, char *filenameg
int PyRun_InteractiveLoop (FILE *fp, char *filename¢

struct _node* PyParser _SimpleParseString (char *str, int star)
Parse Python source code fraatn using the start tokestart The result can be used to create a code object
which can be evaluated efficiently. This is useful if a code fragment must be evaluated many times.

struct _node* PyParser _SimpleParseFile (FILE *fp, char *filename, int staft
Similar toPyParser _SimpleParseString() , but the Python source code is read fréprinstead of an
in-memory stringfilenameshould be the name of the file.

PyObject* PyRun_String (char *str, int start, PyObject *globals, PyObject *locals
Execute Python source code fraatn in the context specified by the dictionarigiebalsandlocals The param-
eterstart specifies the start token that should be used to parse the source code.

Returns the result of executing the code as a Python objeldit Jbt_if an exception was raised.

PyObject* PyRun_File (FILE *fp, char *filename, int start, PyObject *globals, PyObject *locals
Similar to PyRun_String() , but the Python source code is read fréprinstead of an in-memory string.
filenameshould be the name of the file.

PyObject* Py_CompileString (char *str, char *filename, int stajt
Parse and compile the Python source cod#rireturning the resulting code object. The start token is given by
start; this can be used to constrain the code which can be compiled. The filename specifiedayeis used
to construct the code object and may appear in tracebackgrdaxError exception messages. This returns
NULL if the code cannot be parsed or compiled.

10

CHAPTER
THREE

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void Py_INCREHR PyObject *9
Increment the reference count for objectThe object must not bHULL; if you aren’t sure that it isn'NULL,
usePy_XINCREF() .

void Py_XINCREHK PyObject *g
Increment the reference count for objecfThe object may b&lULL, in which case the macro has no effect.

void Py_DECREFPyObject *9
Decrement the reference count for objecThe object must not bULL; if you aren’t sure that it isn'NULL,
usePy_XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function (which must
not beNULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance
with a__del __() method is deallocated). While exceptions in such code are not propagated, the executed
code has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state beRye DECREF() is invoked. For example, code to delete an object

from a list should copy a reference to the deleted object in a temporary variable, update the list data structure,
and then calPy_DECREF() for the temporary variable.

void Py_XDECREFPyObject *g
Decrement the reference count for objectThe object may b&ULL, in which case the macro has no effect;
otherwise the effect is the same asiRy_DECREF(), and the same warning applies.

The following functions or macros are only for internal usePy_Dealloc() , _Py_ForgetReference())
_Py_NewReference() , as well as the global variablePy RefTotal

XXX Should mention PyMalloc(), Py Realloc(), PyFree()) PyMemMalloc(), PyMem Realloc(),
PyMem_Free(), PyMemNEW(), PyMem_RESIZE(), PyMem DEL(), PyMem_XDELY().

11

12

CHAPTER
FOUR

Exception Handling

The functions in this chapter will let you handle and raise Python exceptions. It is important to understand some of
the basics of Python exception handling. It works somewhat like thix @rrno variable: there is a global indicator

(per thread) of the last error that occurred. Most functions don't clear this on success, but will set it to indicate the
cause of the error on failure. Most functions also return an error indicator, udiladlly if they are supposed to return

a pointer, or1 if they return an integer (exception: tRyArg _Parse*() functions returrl for success an@ for

failure). When a function must fail because some function it called failed, it generally doesn’t set the error indicator;

the function it called already set it.

The error indicator consists of three Python objects corresponding to the Python vasgblesc _type ,
sys.exc _value andsys.exc _traceback . API functions exist to interact with the error indicator in various
ways. There is a separate error indicator for each thread.

void PyErr _Print ()
Print a standard tracebackggs.stderr and clear the error indicator. Call this function only when the error
indicator is set. (Otherwise it will cause a fatal error!)

PyObject* PyErr _Occurred ()
Test whether the error indicator is set. If set, return the excepyioa(the first argument to the last call to
one of thePyErr _Set*() functions or toPyErr _Restore()). If not set, returrNULL You do not own a
reference to the return value, so you do not neeeitaDECREF() it. Note: do not compare the return value
to a specific exception; usgyErr _ExceptionMatches() instead, shown below.

int PyErr _ExceptionMatches (PyObject *exg
Equivalent to PyErr _GivenExceptionMatches(PyErr _Occurred(), exq . This should only be
called when an exception is actually set.

int PyErr _GivenExceptionMatches (PyObiject *given, PyObject *eXc
Return true if thegivenexception matches the exceptiongrc If excis a class object, this also returns true
whengivenis a subclass. Iéxcis a tuple, all exceptions in the tuple (and recursively in subtuples) are searched
for a match. This should only be called when an exception is actually set.

void PyErr _NormalizeException (PyObject**exc, PyObject**val, PyObject**{b
Under certain circumstances, the values returndeyiyrr _Fetch() below can be “unnormalized”, meaning
that* excis a class object butval is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens.

void PyErr _Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErr _Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set
all three variables ttlULL If it is set, it will be cleared and you own a reference to each object retrieved. The
value and traceback object may N&JLL even when the type object is noWote: this function is normally
only used by code that needs to handle exceptions or by code that needs to save and restore the error indicator

13

temporarily.

void PyErr _Restore (PyObject *type, PyObject *value, PyObject *traceback

Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects
are NULL, the error indicator is cleared. Do not pasdldLL type and norNULL value or traceback. The
exception type should be a string or class; if it is a class, the value should be an instance of that class. Do not
pass an invalid exception type or value. (Violating these rules will cause subtle problems later.) This call takes
away a reference to each object, i.e. you must own a reference to each object before the call and after the call
you no longer own these references. (If you don’t understand this, don’t use this function. | warneldgteu.)

this function is normally only used by code that needs to save and restore the error indicator temporarily.

void PyErmr _SetString (PyObject *type, char *messape
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, €gExc _RuntimeError . You need not increment its reference
count. The second argument is an error message; it is converted to a string object.

void PyErr _SetObject (PyObject *type, PyObject *valge
This function is similar toPyErr _SetString() but lets you specify an arbitrary Python object for the
“value” of the exception. You need not increment its reference count.

void PyErr _SetNone (PyObject *typg
This is a shorthand foPyErr _SetObject(typg Py _None)'.

int PyErr _BadArgument ()
This is a shorthand folPyErr _SetString(PyExc _TypekError, messagg’, where messagéndicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr _NoMemory()
This is a shorthand foPyErr _SetNone(PyExc _MemoryError) ;itreturnsNULLso an object allocation
function can writefeturn PyErr _NoMemory(); ’when it runs out of memory.

PyObject* PyErr _SetFromErrno (PyObject *typé
This is a convenience function to raise an exception when a C library function has returned an error and set the C
variableerrno . It constructs a tuple object whose first item is the intesyano value and whose second item
is the corresponding error message (gotten febrarror()), and then callsPyErr _SetObject(type
objec) . On UNix, when theerrno value isEINTR, indicating an interrupted system call, this cdbg-
Err _CheckSignals() , and if that set the error indicator, leaves it set to that. The function always returns
NULL so a wrapper function around a system call can wrigéurn PyErr _SetFromErrno(); ' when
the system call returns an error.

void PyErr _BadinternalCall 0

This is a shorthand folPyErr _SetString(PyExc _TypekError, messagge’, where messagéndicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

int PyErr _CheckSignals ()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. Isigaal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effect3tBINT is to raise theKeyboadinterrupt
exception. If an exception is raised the error indicator is set and the function rétuntiserwise the function
returns0. The error indicator may or may not be cleared if it was previously set.

void PyErr _Setinterrupt 0
This function is obsolete (XXX or platform dependent?). It simulates the effecB0GENT signal arriving —
the next timePyErr _CheckSignals() is called,KeyboadInterrupt will be raised.

PyObject* PyErr _NewException (char *name, PyObject *base, PyObject *dict
This utility function creates and returns a new exception object. riEmeeargument must be the name of the
new exception, a C string of the formodule.class . Thebaseanddict arguments are normalljULL
Normally, this creates a class object derived from the root for all exceptions, the built-in Ereception

14 Chapter 4. Exception Handling

(accessible in C aByExc _Exception). In this case the _module __ attribute of the new class is set to the
first part (up to the last dot) of theameargument, and the class name is set to the last part (after the last dot).
When the user has specified tH command line option to use string exceptions, for backward compatibility,
or when thebaseargument is not a class object (and hiLL), a string object created from the entitfame
argument is returned. THeseargument can be used to specify an alternate base classlicilgument can

be used to specify a dictionary of class variables and methods.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose namedydirc -’ followed
by the Python exception name. These have the tRy®bject * ; they are all either class objects
or string objects, depending on the use of the¢ option to the interpreter. For completeness, here

are all the variables: PyExc _Exception , PyExc_StandardError , PyExc _ArithmeticError ,
PyExc _LookupError , PyExc _AssertionError , PyExc _AttributeError , PyExc _EOFError ,
PyExc _EnvironmentError , PyExc _FloatingPointError , PyExc _IOError
PyExc _IlmportError , PyExc _IndexError , PyExc_KeyError , PyExc _Keyboardinterrupt ,
PyExc _MemoryError , PyExc _NameError , PyExc _NotimplementedError , PyExc _OSError
PyExc _OverflowError , PyExc_RuntimeError , PyExc_SyntaxError , PyExc_SystemError

PyExc _SystemExit , PyExc _TypeError , PyExc _ValueError , PyExc _ZeroDivisionError

4.1. Standard Exceptions 15

16

CHAPTER
FIVE

Utilities

The functions in this chapter perform various utility tasks, such as parsing function arguments and constructing Python
values from C values.

5.1 OS Utilities

int

long

Py_FdlsInteractive (FILE *fp, char *filename¢
Return true (nonzero) if the standard I/O filewith namefilenameis deemed interactive. This is the case
for files for which fsatty(fileno(fp)) ' is true. If the global flagPy_InteractiveFlag is true, this

function also returns true if theamepointer isNULL or if the name is equal to one of the stringstdin>"
or"?2??" .

PyOS_GetLastModificationTime (char *filenamé
Return the time of last modification of the fiilename The result is encoded in the same way as the timestamp
returned by the standard C library functitime()

5.2 Process Control

void

void

int

5.3

Py_FatalError (char *messagpe
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when
the object administration appears to be corrupted. @mxUthe standard C library functicabort() is called
which will attempt to produce abre’ file.

Py_Exit (intstatug
Exit the current process. This calRy_Finalize() and then calls the standard C library function
exit(statug.

Py_AtExit (void (*func) ()

Register a cleanup function to be called By_Finalize() . The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successfulRy _AtExit() returns0; on failure, it returns1 . The cleanup function registered last is called

first. Each cleanup function will be called at most once. Since Python’s internal finallization will have completed
before the cleanup function, no Python APIs should be calleftity

Importing Modules

PyObject* Pylmport _ImportModule (char *nameg

This is a simplified interface t®ylmport _ImportModuleEx() below, leaving theglobals and locals

17

arguments set ttlULL When thenameargument contains a dot (i.e., when it specifies a submodule of a
package), thdromlist argument is set to the ligt*] so that the return value is the named module rather
than the top-level package containing it as would otherwise be the case. (Unfortunately, this has an additional
side effect whemamein fact specifies a subpackage instead of a submodule: the submodules specified in the
package’'s__all __ variable are loaded.) Return a new reference to the imported modud,Jlo with an
exception set on failure (the module may still be created in this case — exagsmaodules to find out).

PyObject* Pylmport _ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyObject *fron)list
Import a module. This is best described by referring to the built-in Python functiamport __() , as the
standard__import __() function calls this function directly.

The return value is a new reference to the imported module or top-level packdgelLarwith an exception
set on failure (the module may still be created in this case). Like famport __() , the return value when
a submodule of a package was requested is normally the top-level package, unless a ndmemtigtyvas
given.

PyObject* Pylmport _Import (PyObject *namg
This is a higher-level interface that calls the current “import hook function”. It invokes thport __()
function from the__builtins ~ __ of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment, e.gelsgc orihooks .

PyObject* Pylmport _ReloadModule (PyObject *n)
Reload a module. This is best described by referring to the built-in Python fumetmad() , as the standard
reload() function calls this function directly. Return a new reference to the reloaded modN&Jldrwith
an exception set on failure (the module still exists in this case).

PyObject* Pylmport _AddModule (char *namg
Return the module object corresponding to a module name.n@lreeargument may be of the foripack-
age.module). First check the modules dictionary if there’s one there, and if not, create a new one and insert
in in the modules dictionary. Because the former action is most common, this does not return a new reference,
and you do not own the returned reference. Warning: this function does not load or import the module; if the
module wasn'’t already loaded, you will get an empty module object.Rysmport _ImportModule() or
one of its variants to import a module. RetiNbILL with an exception set on failur&ote: this function returns
a “borrowed” reference.

PyObject* Pylmport _ExecCodeModule (char*name, PyObject *cp
Given a module name (possibly of the fopackage.module) and a code object read from a Python bytecode
file or obtained from the built-in functiooompile() , load the module. Return a new reference to the module
object, orNULL with an exception set if an error occurred (the module may still be created in this case). (This
function would reload the module if it was already imported.)

long Pylmport _GetMagicNumber ()
Return the magic number for Python bytecode files (a.kpgcand ‘.pyo’ files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* Pylmport _GetModuleDict ()
Return the dictionary used for the module administration (a.kys.modules). Note that this is a per-
interpreter variable.

void _Pylmport _Init ()
Initialize the import mechanism. For internal use only.

void Pylmport _Cleanup ()
Empty the module table. For internal use only.

void _Pylmport _Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _Pylmport _FindExtension (char*, char *)
For internal use only.

18 Chapter 5. Utilities

PyObject* _Pylmport _FixupExtension (char*, char*)
For internal use only.

int Pylmport _ImportFrozenModule (char *)
Load a frozen module. Retuthfor success if the module is not found, and with an exception set if the
initialization failed. To access the imported module on a successful loa@ylisgort _ImportModule()
(Note the misnomer — this function would reload the module if it was already imported.)

struct _frozen
This is the structure type definition for frozen module descriptors, as generated redhe utility (see
‘Tools/freeze/” in the Python source distribution). Its definition is:

struct _frozen {
char *name;
unsigned char *code;
int size;

k

struct _frozen* Pylmport _FrozenModules
This pointer is initialized to pointto an array sffruct ~ _frozen records, terminated by one whose members
are alINULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could
play tricks with this to provide a dynamically created collection of frozen modules.

5.3. Importing Modules 19

20

CHAPTER
SIX

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will flag
a Python exception.

6.1 Object Protocol

int PyObject _Print (PyObject*o, FILE *fp, int flagk
Print an objecb, on filefp. Returns-1 on error The flags argument is used to enable certain printing options.
The only option currently supported®y_PRINT_RAW

int PyObject _HasAttrString (PyObject *o, char *attr namg
Returnsl if o has the attributattr_name and O otherwise. This is equivalent to the Python expression
‘hasattr(o, attr_namg . This function always succeeds.

PyObject* PyObject _GetAttrString (PyObject *o, char *attr namg
Retrieve an attribute namexdir_namefrom objecto. Returns the attribute value on succes$\OLL on failure.
This is the equivalent of the Python expressiondttr_name.

int PyObject _HasAttr (PyObject*o, PyObject *attrname
Returnsl if o has the attributattr_name and O otherwise. This is equivalent to the Python expression
‘hasattr(o, attr_namg . This function always succeeds.

PyObject* PyObject _GetAttr (PyObiject *o, PyObject *attrnamg
Retrieve an attribute nameditr_namefrom objecto. Returns the attribute value on succes$\ Ot Lon failure.
This is the equivalent of the Python expressiondttr_name.

int PyObject _SetAttrString (PyObject *o, char *attr name, PyObject *v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statement attr_name = V.

int PyObject _SetAttr (PyObject *o, PyObject *attrname, PyObject *v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statement attr_name = V.

int PyObject _DelAttrString (PyObject *o, char *attr.namg
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statement:del o. attr_name.

int PyObject _DelAttr (PyObject*o, PyObject *attrnameg
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statementdel o. attr_namé.

int PyObject _Cmy PyObject *o1, PyObject *02, int *resylt

21

Compare the values ofl ando2 using a routine provided by, if one exists, otherwise with a routine provided
by 02. The result of the comparison is returnedé@sult Returns-1 on failure. This is the equivalent of the
Python statementésult = cmp(0l1, 02"

int PyObject _Compare(PyObject *o1, PyObject *oR
Compare the values afl ando2 using a routine provided bgl, if one exists, otherwise with a routine pro-
vided byo2. Returns the result of the comparison on success. On error, the value returned is undefined; use
PyErr _Occurred() to detect an error. This is equivalent to the Python expressiop(o0l, 02)'.

PyObject* PyObject _Repr (PyObject *g
Compute the string representation of objectReturns the string representation on succhi&f, L on failure.
This is the equivalent of the Python expressicepr(o) ’. Called by therepr() built-in function and by
reverse quotes.

PyObject* PyObject _Str (PyObject *9
Compute the string representation of objectReturns the string representation on succli&fi, L on failure.
This is the equivalent of the Python expressisti(o) '. Called by thestr() built-in function and by the
print statement.

int PyCallable _Check (PyObject*q
Determine if the objeot, is callable. Returd if the object is callable an@ otherwise. This function always
succeeds.

PyObject* PyObject _CallObject (PyObiject *callable object, PyObject *args
Call a callable Python objedallable_object with arguments given by the tupkrgs If no arguments are
needed, then args may DBJLL Returns the result of the call on successNaiLL on failure. This is the
equivalent of the Python expressiapply(o, args .

PyObject* PyObject _CallFunction (PyObject *callable object, char *format, .).
Call a callable Python objedallable_object with a variable number of C arguments. The C arguments are
described using ®y_BuildValue() style format string. The format may BeULL, indicating that no
arguments are provided. Returns the result of the call on succes§lldron failure. This is the equivalent of
the Python expressiompply(o, args)’.

PyObject* PyObject _CallMethod (PyObject *o, char *m, char *format,).
Call the method nameuh of objecto with a variable number of C arguments. The C arguments are described
by aPy_BuildValue() format string. The format may BeULL, indicating that no arguments are provided.
Returns the result of the call on successN&fLL on failure. This is the equivalent of the Python expression
‘0. method args) '. Note that Special method names, such.asadd __() , __getitem __() ,and soon are
not supported. The specific abstract-object routines for these must be used.

int PyObject _Hash(PyObject*q
Compute and return the hash value of an obgedDn failure, returnl . This is the equivalent of the Python
expressionhash(o) .

int PyObject _IsTrue (PyObject*qg
Returnsl if the objecto is considered to be true, afdotherwise. This is equivalent to the Python expression
‘not not 0O This function always succeeds.

PyObject* PyObject _Type (PyObject *g
On success, returns a type object corresponding to the object type of @bfeffailure, return&NULL This is
equivalent to the Python expressidyge(o) .

int PyObject _Length (PyObject*9
Return the length of object If the objecto provides both sequence and mapping protocols, the sequence length
is returned. On errorl is returned. This is the equivalent to the Python expressamt ‘ o) .

PyObject* PyObject _Getltem (PyObiject *o, PyObject *key
Return element 0b corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressiond[key .

22 Chapter 6. Abstract Objects Layer

int PyObject _Setltem (PyObject*o, PyObject *key, PyObject}v
Map the objeckeyto the valuev. Returns1 on failure. This is the equivalent of the Python statemejhkéy]
= V.

int PyObject _Delltem (PyObject*o, PyObject *key
Delete the mapping fdkeyfrom o. Returns-1 on failure. This is the equivalent of the Python statemdat *
of key .

6.2 Number Protocol

int PyNumber_Check (PyObject *q
Returnsl if the objecto provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add(PyObject *o1, PyObject *oR
Returns the result of addirgl ando2, or NULL on failure. This is the equivalent of the Python expressain
+ 02.
PyObject* PyNumber_Subtract (PyObject *o1, PyObject *oR
Returns the result of subtracting from o1, or NULLon failure. This is the equivalent of the Python expression
‘ol - o2.
PyObject* PyNumber_Multiply (PyObject *o1, PyObject *oR
Returns the result of multiplyingl ando2, or NULL on failure. This is the equivalent of the Python expression
‘ol * o2.
PyObject* PyNumber_Divide (PyObject*ol, PyObject *oR
Returns the result of dividingl by 02, or NULL on failure. This is the equivalent of the Python expressain
/ oZ2.
PyObject* PyNumber_Remainder (PyObject *0l1, PyObject *oR
Returns the remainder of dividiral by 02, or NULL on failure. This is the equivalent of the Python expression
‘0l %02.

PyObject* PyNumber_Divmod (PyObject *o01, PyObject *op
See the built-in functiodivmod() . ReturndNULL on failure. This is the equivalent of the Python expression
‘divmod(01, 02)’.

PyObject* PyNumber_Power (PyObject *01, PyObject *02, PyObject *»3
See the built-in functiompow() . ReturnsNULL on failure. This is the equivalent of the Python expression
‘pow(o0l, 02 03)’, whereo3is optional. Ifo3is to be ignored, paddy_None in its place.

PyObject* PyNumber_Negative (PyObject *9
Returns the negation afon success, ddULL on failure. This is the equivalent of the Python expressia.’

PyObject* PyNumber_Positive (PyObject *9
Returnso on success, ddULL on failure. This is the equivalent of the Python expressie.

PyObject* PyNumber_Absolute (PyObject *9
Returns the absolute value @for NULL on failure. This is the equivalent of the Python expressabs(o) '

PyObject* PyNumber_Invert (PyObject *g
Returns the bitwise negation obn success, ddULLon failure. This is the equivalent of the Python expression

0.

PyObject* PyNumber_Lshift (PyObject *ol1, PyObject *oR
Returns the result of left shiftingl by 02 on success, ddULL on failure. This is the equivalent of the Python
expressionol << 02.

PyObject* PyNumber_Rshift (PyObject *ol1, PyObject *oR
Returns the result of right shiftingll by 02 on success, ddULLon failure. This is the equivalent of the Python

6.2. Number Protocol 23

expressionol >> 02.

PyObject* PyNumber_And(PyObject *o1, PyObject *oP
Returns the result of “anding32 ando2 on success andULL on failure. This is the equivalent of the Python
expressionol and o2.

PyObject* PyNumber_Xor (PyObject *o1, PyObject *oP
Returns the bitwise exclusive or ol by 02 on success, ddULLon failure. This is the equivalent of the Python
expressionol © oZ.

PyObject* PyNumber_Or(PyObject *o1, PyObject *op
Returns the result af1 ando2 on success, dlULL on failure. This is the equivalent of the Python expression
‘ol or o2.

PyObject* PyNumber_Coerce (PyObject **p1, PyObject **p2
This function takes the addresses of two variables of Byf@bject*

If the objects pointed to by pl and* p2 have the same type, increment their reference count and reéturn
(success). If the objects can be converted to a common numeric type, rgplaemd*p2 by their converted
value (with 'new’ reference counts), and retn If no conversion is possible, or if some other error occurs,
return-1 (failure) and don’t increment the reference counts. TheRgNumber_Coerce(&ol, &02) is
equivalent to the Python statemeai, 02 = coerce(0l, 02)'.

PyObject* PyNumber_Int (PyObject *9
Returns the converted to an integer object on succes$\Ot L on failure. This is the equivalent of the Python
expressionint(o).

PyObject* PyNumber_Long (PyObject *g
Returns theo converted to a long integer object on succes\NOLL on failure. This is the equivalent of the
Python expressioriong(o) .

PyObject* PyNumber_Float (PyObject *9
Returns theo converted to a float object on successNWLL on failure. This is the equivalent of the Python
expressionfloat(0) .

6.3 Sequence Protocol

int PySequence _Check (PyObject *9
Returnl if the object provides sequence protocol, &nadtherwise. This function always succeeds.

PyObject* PySequence _Concat (PyObject *01, PyObject *op
Return the concatenation ofl ando2 on success, anbdULL on failure. This is the equivalent of the Python
expressionol + oZ.

PyObject* PySequence _Repeat (PyObject *o, int count
Return the result of repeating sequence obgecvunttimes, orNULL on failure. This is the equivalent of the
Python expressioro' * count.

PyObject* PySequence _Getltem (PyObject *o, int)
Return theth element ob, or NULL on failure. This is the equivalent of the Python expressapn]'’.

PyObject* PySequence _GetSlice (PyObject*o, intil, intid
Return the slice of sequence objedietweeril andi2, or NULLon failure. This is the equivalent of the Python
expressiond[il: i2] .

int PySequence _Setltem (PyObject *o, inti, PyObject *v
Assign objectv to theith element ofo. Returns-1 on failure. This is the equivalent of the Python statement

‘ofi] = V.

int PySequence _Delltem (PyObject *o, int)

24 Chapter 6. Abstract Objects Layer

Delete thdth element of object. Returns-1 on failure. This is the equivalent of the Python statemdat *
ofi]".

int PySequence _SetSlice (PyObject *o, intil, inti2, PyObject *
Assign the sequence objecto the slice in sequence objexfrom il toi2. This is the equivalent of the Python

statemento[il: i2] = V.

int PySequence _DelSlice (PyObject*o,intil, intiJ
Delete the slice in sequence objedrom il toi2. Returns-1 on failure. This is the equivalent of the Python
statementdel of il:i2] .

PyObject* PySequence _Tuple (PyObject*g
Returns th@ as a tuple on success, adtLLon failure. This is equivalent to the Python expressigie(o).

int PySequence _Count (PyObject *o, PyObject *value
Return the number of occurrencesvaluein o, that is, return the number of keys for whichkey == value
On failure, return1 . This is equivalent to the Python expressiorcount(valug .

int PySequence _In (PyObject *o, PyObiject *value
Determine ifo containsvalue If an item ino is equal tovalug returnl, otherwise returd. On error, return
-1 . This is equivalent to the Python expressigalue in 0.

int PySequence _Index (PyObject *o, PyObject *value
Return the first index for which o[i] == wvalue On error, returnl . This is equivalent to the Python
expressiono.index(value ’.

6.4 Mapping Protocol

int PyMapping _Check (PyObject *g
Returnl if the object provides mapping protocol, aBatherwise. This function always succeeds.

int PyMapping _Length (PyObject *9
Returns the number of keys in objerbn success, and. on failure. For objects that do not provide sequence
protocol, this is equivalent to the Python expressien(o) .

int PyMapping _DelltemString (PyObject *o, char *key
Remove the mapping for objekeyfrom the object. Return-1 on failure. This is equivalent to the Python
statementdel of key] .

int PyMapping _Delltem (PyObject *o, PyObject *key
Remove the mapping for objekeyfrom the objectb. Return-1 on failure. This is equivalent to the Python
statementdel of key] .

int PyMapping _HasKeyString (PyObiject *o, char *key
On success, returh if the mapping object has the ké&gyandO otherwise. This is equivalent to the Python
expressiono.has _key(key) '. This function always succeeds.

int PyMapping _HasKey(PyObject *o, PyObject *key
Returnl if the mapping object has the kdégyandO otherwise. This is equivalent to the Python expression
‘o.has _key(key) . This function always succeeds.

PyObject* PyMapping _Keys (PyObject *9
On success, return a list of the keys in objectOn failure, returnNULL This is equivalent to the Python
expressiono.keys() '

PyObject* PyMapping _Values (PyObject *g
On success, return a list of the values in objectOn failure, returrNULL This is equivalent to the Python
expressiono.values() '

PyObject* PyMapping _Iltems (PyObject *g

6.4. Mapping Protocol 25

On success, return a list of the items in objectvhere each item is a tuple containing a key-value pair. On
failure, returnNULL This is equivalent to the Python expressioritems() '

int PyMapping _Clear (PyObject*g
Make objecto empty. Returnd on success and on failure. This is equivalent to the Python stateméanit *
key in o.keys(): del okey]

PyObject* PyMapping _GetltemString (PyObject *o, char *key
Return element 0b corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressiond[key] .

int PyMapping _SetltemString (PyObject *o, char *key, PyObiject jv
Map the objeckeyto the valuev in objecto. Returns-1 on failure. This is the equivalent of the Python

statementd| key] = V.

6.5 Constructors

PyObject* PyFile _FromString (char *file_name, char *mode
On success, returns a new file object that is opened on the file givéle byame with a file mode given by
mode wheremodehas the same semantics as the standard C rdiofiea() . On failure, returnl .

PyObject* PyFile _FromFile (FILE *fp, char *file_name, char *mode, int clos®n_del)
Return a new file object for an already opened standard C file pofpteA file name,file_name and open
mode,mode must be provided as well as a flaipse_on_del, that indicates whether the file is to be closed
when the file object is destroyed. On failure, retetn

PyObject* PyFloat _FromDouble (doubley
Returns a new float object with the valuen success, andULL on failure.

PyObject* PyIint _FromLong (long V)
Returns a new int object with the value®n success, andULL on failure.

PyObject* PyList _New(intlen)
Returns a new list of lengtlen on success, andULL on failure.

PyObject* PyLong _FromLong (long V)
Returns a new long object with the valuen success, arldULL on failure.

PyObject* PyLong _FromDouble (double y
Returns a new long object with the valuen success, andULL on failure.

PyObject* PyDict _New()
Returns a new empty dictionary on success, ldbid.L on failure.
PyObject* PyString _FromsString (char *v)
Returns a new string object with the valen success, andULL on failure.
PyObject* PyString _FromStringAndSize (char *v, intlen
Returns a new string object with the valuand lengthen on success, andULL on failure. Ifvis NULL, the
contents of the string are uninitialized.

PyObject* PyTuple _New(intlen)
Returns a new tuple of lengtin on success, andULL on failure.

26 Chapter 6. Abstract Objects Layer

CHAPTER
SEVEN

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you
must perform a type check first; e.g. to check that an object is a dictionarPyiziet _Check() . The chapter is
structured like the “family tree” of Python object types.

7.1 Fundamental Objects

This section describes Python type objects and the singleton dbject.

Type Objects

PyTypeObject

PyObject * PyType _Type
This is the type object for type objects; it is the same objetypess. TypeType in the Python layer.

The None Object

PyObject * Py_None
The PythoriNone object, denoting lack of value. This object has no methods.

7.2 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

String Objects
PyStringObject

This subtype oPyObject represents a Python string object.
PyTypeObject PyString _Type

This instance oPyTypeObject represents the Python string type.
int PyString _Check (PyObject *q

Returns true if the objedtis a string object.

27

PyObject* PyString _FromStringAndSize (const char *v, int lef
Returns a new string object with the valuand lengthen on success, andULL on failure. Ifvis NULL, the
contents of the string are uninitialized.

PyObject* PyString _FromString (constchar*y
Returns a new string object with the valuen success, andULL on failure.

int PyString _Size (PyObject *string
Returns the length of the string in string objsttng.

char* PyString _AsString (PyObject *string
Resturns &aULL terminated representation of the contentstohg.

void PyString _Concat (PyObject **string, PyObject *newpalt
Creates a new string object fstring containing the contents aiewpartappended tstring. The old value of
string have its reference count decremented. If the new string cannot be created, the old refesaimpwdl
still be discarded and the value tdtring will be set toNULL; the appropriate exception will be set.

void PyString _ConcatAndDel (PyObject **string, PyObject *newpa)t
Creates a new string object fistring containing the contents afewpartappended testring. This version
decrements the reference counnefvpart

int _PyString _Resize (PyObject **string, int newsize
A way to resize a string object even though it is “immutable”. Only use this to build up a brand new string
object; don't use this if the string may already be known in other parts of the code.

PyObject* PyString _Format (PyObject *format, PyObject *args
Returns a new string object froformatandargs Analogous tdormat %args. Theargsargument must be a
tuple.

void PyString _lInterninPlace (PyObject **string
Intern the argumeristring in place. The argument must be the address of a pointer variable pointing to a Python
string object. If there is an existing interned string that is the samstasg, it sets*string to it (decrementing
the reference count of the old string object and incrementing the reference count of the interned string object),
otherwise it leavesstring alone and interns it (incrementing its reference count). (Clarification: even though
there is a lot of talk about reference counts, think of this function as reference-count-neutral; you own the object
after the call if and only if you owned it before the call.)

PyObject* PyString _InternFromsString (const char *y
A combination ofPyString _FromString() andPyString _InterninPlace() , returning either a
new string object that has been interned, or a new (“owned”) reference to an earlier interned string object with
the same value.
char* PyString _AS_STRING PyObject *string
Macro form ofPyString _AsString() but without error checking.
int PyString _GET_SIZE (PyObject *string
Macro form of PyString _GetSize() but without error checking.

Tuple Objects
PyTupleObject
This subtype oPyObject represents a Python tuple object.

PyTypeObject PyTuple _Type
This instance oPyTypeObject represents the Python tuple type.

int PyTuple _Check(PyObject *p
Return true if the argument is a tuple object.

PyObject* PyTuple _New(ints)

28 Chapter 7. Concrete Objects Layer

Return a new tuple object of size

int PyTuple _Size (PyTupleObject *p
Takes a pointer to a tuple object, and returns the size of that tuple.

PyObject* PyTuple _Getltem (PyTupleObject *p, int pas
Returns the object at positiggosin the tuple pointed to bp. If posis out of bounds, returndULL and sets an
IndexError exception.Note: this function returns a “borrowed” reference.

PyObject* PyTuple _GET_ITEM(PyTupleObject *p, int pgs
Does the same, but does no checking of its arguments.

PyObject* PyTuple _GetSlice (PyTupleObject *p, int low, int high
Takes a slice of the tuple pointed to pyrom low to highand returns it as a new tuple.

int PyTuple _Setltem (PyTupleObject *p, int pos, PyObject)o
Inserts a reference to objexht positionposof the tuple pointed to bp. It returns0O on success.

void PyTuple _SET_ITEM(PyTupleObiject *p, int pos, PyObject)o
Does the same, but does no error checking, and stomilybe used to fill in brand new tuples.

int _PyTuple _Resize (PyTupleObject *p, int new, int lasts_sticky)
Can be used to resize a tuple. Because tuplesugpposedo be immutable, this should only be used if there is
only one module referencing the object. Dot use this if the tuple may already be known to some other part
of the codelast_is_stickyis a flag — if set, the tuple will grow or shrink at the front, otherwise it will grow or
shrink at the end. Think of this as destroying the old tuple and creating a new one, only more efficiently.

List Objects

PyListObject
This subtype oPyObject represents a Python list object.

PyTypeObject PyList _Type
This instance oPyTypeObject represents the Python list type.

int PyList _Check (PyObject *p
Returns true if its argument isRyListObject

PyObject* PyList _New(int sizg
Returns a new list of lengtlen on success, andULL on failure.

int PyList _Size (PyObiject *lis)
Returns the length of the list object list.

PyObject* PyList _Getltem (PyObiject *list, int indeX
Returns the object at positiggosin the list pointed to byp. If posis out of bounds, returndULL and sets an
IndexError exception.Note: this function returns a “borrowed” reference.

int PyList _Setltem (PyObject *list, int index, PyObject *itejn
Sets the item at indeindexin list to item

int PyList _Insert (PyObject *list, intindex, PyObject *iten
Inserts the iteniteminto list list in front of indexindex Returns 0 if successful; returns -1 and sets an exception
if unsuccessful. Analogous tst.insert(index, item)

int PyList _Append (PyObject *list, PyObject *itetn
Appends the objedtem at the end of listist. Returns O if successful; returns -1 and sets an exception if
unsuccessful. Analogous list.append(item)

PyObject* PyList _GetSlice (PyObject *list, int low, int high
Returns a list of the objects ilist containing the objectbetween lowandhigh. Returns NULL and sets an
exception if unsuccessful. Analogouslit[low:high]

7.2. Sequence Objects 29

int PyList _SetSlice (PyObject *list, int low, int high, PyObject *itemlist
Sets the slice oflist between low and high to the contents ofitemlist Analogous to
list[low:high]=itemlist . Returns 0 on success, -1 on failure.

int PyList _Sort (PyObject *lis)
Sorts the items dist in place. Returns 0 on success, -1 on failure.
int PyList _Reverse (PyObject *lis)
Reverses the items 6t in place. Returns 0 on success, -1 on failure.
PyObject* PyList _AsTuple (PyObject *lis}
Returns a new tuple object containing the contentssbf
PyObject* PyList _GET_ITEM(PyObject *list, int)
Macro form ofPyList _Getltem() without error checking.
PyObject* PyList _SET_ITEM(PyObject *list, inti, PyObject *p
Macro form ofPyList _Setltem() without error checking.

int PyList _GET_SIZE (PyObiject *lis}
Macro form ofPyList _GetSize() without error checking.

7.3 Mapping Objects

Dictionary Objects

PyDictObject
This subtype oPyObject represents a Python dictionary object.

PyTypeObject PyDict _Type

This instance oPyTypeObject represents the Python dictionary type.
int PyDict _Check (PyObject *p

Returns true if its argument isRyDictObject
PyObject* PyDict _New()

Returns a new empty dictionary.

void PyDict _Clear (PyDictObject*p
Empties an existing dictionary of all key/value pairs.

int PyDict _Setltem (PyDictObject *p, PyObject *key, PyObiject *val
Insertsvalueinto the dictionary with a key okey Both keyandvalueshould be PyObjects, arayshould be
hashable.

int PyDict _SetltemString (PyDictObiject *p, char *key, PyObject *val
Insertsvalueinto the dictionary usindeyas a key.keyshould be ahar * . The key object is created using
PyString _FromString(key) .

int PyDict _Delltem (PyDictObject *p, PyObject *key
Removes the entry in dictionapwith key key. keyis a PyObject.
int PyDict _DelltemString (PyDictObject *p, char *key
Removes the entry in dictionapwhich has a key specified by tichar * key
PyObject* PyDict _Getltem (PyDictObject *p, PyObject *key
Returns the object from dictionapmhich has a kekey ReturnadNULLIf the keykeyis not present, but without
(1) setting an exceptiorNote: this function returns a “borrowed” reference.

PyObject* PyDict _GetltemString (PyDictObject *p, char *key
This is the same aByDict _Getltem() , butkeyis specified as ahar * , rather than &yObject *

30 Chapter 7. Concrete Objects Layer

PyObject* PyDict _ltems (PyDictObject *p
Returns éPyListObject containing all the items from the dictionary, as in the dictinoary mettesds()
(see thePython Library Referenge

PyObject* PyDict _Keys (PyDictObject *p
Returns aPyListObject containing all the keys from the dictionary, as in the dictionary meted()
(see thePython Library Referenge

PyObject* PyDict _Values (PyDictObject *p
Returns &PyListObject containing all the values from the dictionguyas in the dictionary methoehl-
ues() (seethePython Library Referenge

int PyDict _Size (PyDictObject*p
Returns the number of items in the dictionary.

int PyDict _Next (PyDictObject *p, int ppos, PyObject **pkey, PyObject **pvajue

7.4 Numeric Objects

Plain Integer Objects

PyIntObject
This subtype oPyObject represents a Python integer object.

PyTypeObject Pyint _Type
This instance oPyTypeObject represents the Python plain integer type.

int PyIint _Check(PyObject?

PyObject* PyInt _FromLong (long ival)
Creates a new integer object with a valueval.

The current implementation keeps an array of integer objects for all integers betivessrd 100, when you
create an int in that range you actually just get back a reference to the existing object. So it should be possible
to change the value df. | suspect the behaviour of Python in this case is undefined. :-)

long Pyint _AS_LONG PyIntObject *ig
Returns the value of the objeict No error checking is performed.

long Pyint _AsLong (PyObject *ig
Will first attempt to cast the object toRyIntObject , if it is not already one, and then return its value.

long PyInt _GetMax()
Returns the systems idea of the largest integer it can hab@RG MAX as defined in the system header files).

Long Integer Objects
PyLongObject

This subtype oPyObject represents a Python long integer object.
PyTypeObject PyLong _Type

This instance oPyTypeObject represents the Python long integer type.
int PyLong _Check (PyObject *p

Returns true if its argument isRyLongObject

PyObject* PyLong _FromLong (long V)
Returns a neWwyLongObject object fromv.

7.4. Numeric Objects 31

PyObject* PyLong _FromUnsignedLong (unsigned long)y
Returns a neWwPyLongObject object from an unsigned C long.

PyObject* PyLong _FromDouble (doubley
Returns a neWwPyLongObject object from the integer part of

long PyLong _AsLong (PyObiject *pylong
Returns a dong representation of the contents pflong WHAT HAPPENS IFpylongis greater than
LONG MAX

unsigned long PyLong _AsUnsignedLong (PyObject *pylong
Returns a Qinsigned long representation of the contentsmflong WHAT HAPPENS IFpylongis greater
thanULONGMAX

double PyLong _AsDouble (PyObject *pylong
Returns a Qlouble representation of the contentsmflong

PyObject* PyLong _FromString (char *str, char **pend, int basg

Floating Point Objects

PyFloatObject
This subtype oPyObject represents a Python floating point object.

PyTypeObject PyFloat _Type
This instance oPyTypeObject represents the Python floating point type.

int PyFloat _Check(PyObject *p
Returns true if its argument isRyFloatObject

PyObject* PyFloat _FromDouble (doubley
Creates #yFloatObject object fromv.

double PyFloat _AsDouble (PyObject *pyfloat
Returns a Glouble representation of the contentsmffloat

double PyFloat _AS_DOUBLEPyObject *pyfloa}
Returns a Qlouble representation of the contentsmffloat but without error checking.

Complex Number Objects

Py_complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;
double imag;
} Py_complex;

PyComplexObject
This subtype oPyObject represents a Python complex number object.

PyTypeObject PyComplex _Type
This instance oPyTypeObject represents the Python complex number type.

int PyComplex _Check (PyObject *p
Returns true if its argument isRyComplexObject

32 Chapter 7. Concrete Objects Layer

Py_complex _Py_c_sum(Py_complex left, Pycomplex righ}
Py_complex _Py_c_diff (Py_complex left, Pycomplex right
Py_complex _Py_c_neg(Py_complex complgx

Py_complex _Py_c_prod (Py_complex left, Pycomplex right
Py_complex _Py_c_quot (Py_complex dividend, Pycomplex divisor
Py_complex _Py_c_pow(Py_complex hum, Pycomplex exp
PyObject* PyComplex _FromCComplex (Py_complex ¥

PyObject* PyComplex _FromDoubles (double real, double imgg
Returns a neWwPyComplexObject object fromreal andimag

double PyComplex _RealAsDouble (PyObject *op
Returns the real part @fp as a Cdouble .

double PyComplex _ImagAsDouble (PyObject *op
Returns the imaginary part op as a Cdouble .

Py_complex PyComplex _AsCComplex (PyObject *op

7.5 Other Objects

File Objects

PyFileObject

This subtype oPyObject represents a Python file object.
PyTypeObject PyFile _Type

This instance oPyTypeObject represents the Python file type.
int PyFile _Check(PyObject*p

Returns true if its argument isRyFileObject

PyObject* PyFile _FromString (char *name, char *mode
Creates a neWwyFileObject pointing to the file specified inamewith the mode specified imode

PyObject* PyFile _FromFile (FILE *fp, char *name, char *mode, int (*closg)
Creates a neRyFileObject from the already-opefp. The functionclosewill be called when the file should
be closed.

FILE * PyFile _AsFile (PyFileObject*p
Returns the file object associated witlas aFILE * .
PyObject* PyFile _GetLine (PyObject*p, intn)
undocumented as yet
PyObject* PyFile _Namg PyObject *p
Returns the name of the file specifiedpsis aPyStringObject

void PyFile _SetBufSize (PyFileObject*p,intn
Available on systems withetvbuf() only. This should only be called immediately after file object creation.

int PyFile _SoftSpace (PyFileObject *p, int newflag
Sets thesoftspace attribute ofp to newflag Returns the previous value. This function clears any errors, and
will return O as the previous value if the attribute either does not exist or if there were errors in retrieving it.
There is no way to detect errors from this function, but doing so should not be needed.

int PyFile _WriteObject (PyObject *obj, PyFileObject *p, int flags

7.5. Other Objects 33

Writes objectobj to file objectp.

int PyFile _WriteString (char *s, PyFileObject *p, int flags
Writes strings to file objectp.

Module Objects

There are only a few functions special to module objects.

PyObject * PyModule _New(char *namg
Return a new module object with the name__ attribute set tmame Only the module’s__doc __ and
__name__ attributes are filled in; the caller is responsible for providing dile __ attribute.

PyObject * PyModule _GetDict (PyObject *modulg
Return the dictionary object that implememt®dulés namespace; this object is the same as_thdict __
attribute of the module object. This function never fails.

char * PyModule _GetName(PyObject *modulg
Returnmodulés __name__ value. If the module does not provide oisystemError is raised.

char * PyModule _GetFilename (PyObject *module
Return the name of the file from whighodulewas loaded usinghodulés __file __ attribute. If this is not
defined, rais&ystemError

CObjects

PyCObject
This subtype oPyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (aswid * pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to access
C APIs defined in dynamically loaded modules.

PyObject * PyCObject _FromVoidPtr (void* cobj, void (*destr)(void *)
Creates #yCObject from thevoid * cobj. Thedestrfunction will be called when the object is reclaimed.
PyObject * PyCObject _FromVoidPtrAndDesc (void* cobj, void* desc, void (*destr)(void *, void %)
Creates &#yCObject from thevoid * cobj Thedestrfunction will be called when the object is reclaimed.
Thedescargument can be used to pass extra callback data for the destructor function.
void * PyCObject _AsVoidPtr (PyObject* sel)
Returns the objeatoid * that thePyCObject self was created with.

void * PyCObject _GetDesc (PyObject* selj
Returns the descriptiomoid * that thePyCObject self was created with.

34 Chapter 7. Concrete Objects Layer

CHAPTER
EIGHT

Initialization, Finalization, and Threads

void Py_lInitialize 0
Initialize the Python interpreter. In an application embedding Python, this should be called before
using any other Python/C API functions; with the exception Ry_SetProgramName() , PyE-
val _InitThreads() , PyEval _ReleaselLock() , andPyEval _AcquireLock() . This initializes
the table of loaded modulesys.modules), and creates the fundamental modulesbuiltin __,
__main __ andsys . It also initializes the module search palyg.path). It does not sesys.argv ;
use PySys _SetArgv() for that. This is a no-op when called for a second time (without calling
Py_Finalize() first). There is no return value; it is a fatal error if the initialization fails.

int Py_lslnitialized 0
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py _Finalize() is called, this returns false unifly _Initialize() is called again.

void Py_Finalize ()
Undo all initializations made byy _Initialize() and subsequent use of Python/C API functions, and
destroy all sub-interpreters (s®y_Newlnterpreter() below) that were created and not yet destroyed
since the last call t®y_Initialize() . ldeally, this frees all memory allocated by the Python interpreter.
This is a no-op when called for a second time (without callyg_Initialize() again first). There is no

return value; errors during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the
DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated by
Python before exiting from the application.

Bugs and caveatsThe destruction of modules and objects in modules is done in random order; this may cause
destructors (_del __() methods) to fail when they depend on other objects (even functions) or modules.
Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated
by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular
references between objects is not freed. Some memory allocated by extension modules may not be freed. Some
extension may not work properly if their initialization routine is called more than once; this can happen if an
applcation call®y_Initialize() andPy_Finalize() more than once.

PyThreadState* Py_NewInterpreter ()
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the
fundamental modules_builtin ~ __, __main __ andsys . The table of loaded modulesys.modules)
and the module search palyé.path) are also separate. The new environment hasysargv variable.
It has new standard I/O stream file objesis.stdin |, sys.stdout andsys.stderr (however these
refer to the same underlyiffgLE structures in the C library).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation

35

of the new interpreter is unsuccesshlJLLis returned; no exception is set since the exception state is stored in
the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the
global interpreter lock must be held before calling this function and is still held when it returns; however, unlike
most other Python/C API functions, there needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is
imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When the
same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents
of this copy; the extensionisit function is not called. Note that this is different from what happens when an
extension is imported after the interpreter has been completely re-initialized by djlirffginalize() and

Py _lInitialize() ; in that case, the extensiornifsit functionis called again.

Bugs and caveats:Because sub-interpreters (and the main interpreter) are part of the same process, the insu-
lation between them isn’t perfect — for example, using low-level file operationsobkelose() they can
(accidentally or maliciously) affect each other’s open files. Because of the way extensions are shared between
(sub-)interpreters, some extensions may not work properly; this is especially likely when the extension makes
use of (static) global variables, or when the extension manipulates its module’s dictionary after its initialization.

It is possible to insert objects created in one sub-interpreter into a namespace of another sub-interpreter; this
should be done with great care to avoid sharing user-defined functions, methods, instances or classes between
sub-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dic-
tionary of loaded modules. (XXX This is a hard-to-fix bug that will be addressed in a future release.)

void Py_EndIinterpreter (PyThreadState *tstaje
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thre&¢d Kthte is
All thread states associated with this interpreted are destroyed. (The global interpreter lock must be held before
calling this function and is still held when it return®y_Finalize() will destroy all sub-interpreters that
haven’t been explicitly destroyed at that point.

void Py_SetProgramName (char *nam@
This function should be called befoRy _Initialize() is called for the first time, if it is called at all. It
tells the interpreter the value of thegv[0] argument to thenain() function of the program. This is used by
Py_GetPath() and some other functions below to find the Python run-time libraries relative to the interpreter
executable. The default value'igython" . The argument should point to a zero-terminated character string
in static storage whose contents will not change for the duration of the program’s execution. No code in the
Python interpreter will change the contents of this storage.

char* Py_GetProgramName ()
Return the program name set wiRly_SetProgramName() , or the default. The returned string points into
static storage; the caller should not modify its value.

char* Py_GetPrefix ()
Return theprefixfor installed platform-independent files. This is derived through a number of complicated rules
from the program name set witty _SetProgramName() and some environment variables; for example,
if the program name i%usr/local/bin/python" , the prefix is"/usr/local" . The returned string
points into static storage; the caller should not modify its value. This corresponds to the prefix variable in the
top-level ‘Makefile’ and the--prefix argument to theonfigure script at build time. The value is available to
Python code asys.prefix . Itis only useful on Wix. See also the next function.

char* Py_GetExecPrefix ()
Return theexec-prefiXor installed platformdependent files. This is derived through a number of complicated
rules from the program name set wily_SetProgramName() and some environment variables; for ex-
ample, if the program name ‘usr/local/bin/python" , the exec-prefix i$/usr/local" . The re-
turned string points into static storage; the caller should not modify its value. This corresponds to theefivec
variable in the top-levelMakefile’ and the--exec _prefix argument to theonfigure script at build time.
The value is available to Python codesys.exec _prefix . Itis only useful on Wix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables
and shared libraries) are installed in a different directory tree. In a typical installation, platform dependent

36 Chapter 8. Initialization, Finalization, and Threads

files may be installed in th&usr/local/plat" subtree while platform independent may be installed in
"lusr/local"

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines run-
ning the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x
are another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Nar-tperating systems are a different

story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaning-
less, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).

System administrators will know how to configure thmount or automount programs to share
"lusr/local" between platforms while havirnigusr/local/plat" be a different filesystem for each
platform.

char* Py_GetProgramFullPath ()
Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (sePpySetProgramName() above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as
sys.executable

char* Py_GetPath ()
Return the default module search path; this is computed from the program name (set by
Py_SetProgramName() above) and some environment variables. The returned string consists of a
series of directory names separated by a platform dependent delimiter character. The delimiter character is *
on UNIX, ‘; " on DOS/Windows, and *
n’ (the Ascii newline character) on Macintosh. The returned string points into static storage; the caller should
not modify its value. The value is available to Python code as theyspath , which may be modified to
change the future search path for loaded modules.

const char* Py_GetVersion ()
Return the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"

The first word (up to the first space character) is the current Python version; the first three characters are the
major and minor version separated by a period. The returned string points into static storage; the caller should
not modify its value. The value is available to Python code as thsylst/ersion

const char* Py_GetPlatform ()
Return the platform identifier for the current platform. OnM, this is formed from the “official” name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which
is also known as SunOS 5.x, the valuédganos5” . On Macintosh, it iS'mac" . On Windows, it is'win"
The returned string points into static storage; the caller should not modify its value. The value is available to
Python code asys.platform

const char* Py_GetCopyright ()
Return the official copyright string for the current Python version, for example
"Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam”
The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as the lisys.copyright
const char* Py_GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:
"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the varialsigs.version

37

const char* Py_GetBuildinfo ()
Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the varialsigs.version

int PySys _SetArgv (intargc, char **argv)

8.1 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multi-threaded Python programs, there’s a global
lock that must be held by the current thread before it can safely access Python objects. Without the lock, even the
simplest operations could cause problems in a multi-threaded program: for example, when two threads simultaneously
increment the reference count of the same object, the reference count could end up being incremented only once instead
of twice.

Therefore, the rule exists that only the thread that has acquired the global interpreter lock may operate on Python
objects or call Python/C API functions. In order to support multi-threaded Python programs, the interpreter reg-
ularly release and reacquires the lock — by default, every ten bytecode instructions (this can be changed with
sys.setcheckinterval()). The lock is also released and reacquired around potentially blocking 1/O opera-
tions like reading or writing a file, so that other threads can run while the thread that requests the 1/O is waiting for the
I/O operation to complete.

The Python interpreter needs to keep some bookkeeping information separate per thread — for this it uses a data
structure calledPyThreadState . This is new in Python 1.5; in earlier versions, such state was stored in global
variables, and switching threads could cause problems. In particular, exception handling is now thread safe, when the
application usesys.exc _info() to access the exception last raised in the current thread.

There’s one global variable left, however: the pointer to the cufPgiihreadState structure. While most thread
packages have a way to store “per-thread global data,” Python's internal platform independent thread abstraction
doesn’t support this yet. Therefore, the current thread state must be manipulated explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock has the following simple
structure:

Save the thread state in a local variable.
Release the interpreter lock.

...Do some blocking 1/O operation...

Reacquire the interpreter lock.

Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py_BEGIN_ALLOW_THREADS
...Do some blocking 1/O operation...
Py _END_ALLOW_THREADS

The Py_BEGIN_ALLOWTHREADSmacro opens a new block and declares a hidden local variable; the
Py_END ALLOWTHREADSMacro closes the block. Another advantage of using these two macros is that when
Python is compiled without thread support, they are defined empty, thus saving the thread state and lock manipula-
tions.

38 Chapter 8. Initialization, Finalization, and Threads

When thread support is enabled, the block above expands to the following code:

{
PyThreadState *_save;
_save = PyEval_SaveThread();
...Do some blocking /O operation...
PyEval_RestoreThread(_save);

}

Using even lower level primitives, we can get roughly the same effect as follows:

PyThreadState *_save;

_save = PyThreadState_Swap(NULL);
PyEval_ReleaseLock();

...Do some blocking I/O operation...
PyEval_AcquireLock();
PyThreadState_Swap(_save);

There are some subtle differences; in particuPyt=val _RestoreThread() saves and restores the value of the
global variableerrno , since the lock manipulation does not guarantee éhaio is left alone. Also, when thread
support is disabled?yEval _SaveThread() andPyEval _RestoreThread() don’t manipulate the lock; in

this case,PyEval _ReleaseLock() andPyEval _AcquireLock() are not available. This is done so that
dynamically loaded extensions compiled with thread support enabled can be loaded by an interpreter that was compiled
with disabled thread support.

The global interpreter lock is used to protect the pointer to the current thread state. When releasing the lock and saving
the thread state, the current thread state pointer must be retrieved before the lock is released (since another thread
could immediately acquire the lock and store its own thread state in the global variable). Reversely, when acquiring
the lock and restoring the thread state, the lock must be acquired before storing the thread state pointer.

Why am | going on with so much detail about this? Because when threads are created from C, they don’t have the
global interpreter lock, nor is there a thread state data structure for them. Such threads must bootstrap themselves into
existence, by first creating a thread state data structure, then acquiring the lock, and finally storing their thread state
pointer, before they can start using the Python/C API. When they are done, they should reset the thread state pointer,
release the lock, and finally free their thread state data structure.

When creating a thread data structure, you need to provide an interpreter state data structure. The interpreter state
data structure hold global data that is shared by all threads in an interpreter, for example the module administration
(sys.modules). Depending on your needs, you can either create a new interpreter state data structure, or share the
interpreter state data structure used by the Python main thread (to access the latter, you must obtain the thread state
and access itsiterp member; this must be done by a thread that is created by Python or by the main thread after
Python is initialized).

XXX More?

PylInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the
same interpreter share their module administration and a few other internal items. There are no public members
in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

8.1. Thread State and the Global Interpreter Lock 39

PyThreadState

void

void

void

void

void

This data structure represents the state of a single thread. The only public data mePyteteipreter-
State *interp , Which points to this thread’s interpreter state.

PyEval _InitThreads ()

Initialize and acquire the global interpreter lock. It should be called in the main thread before creat-
ing a second thread or engaging in any other thread operations sueliEasl _Releaselock() or
PyEval _ReleaseThread(tstatd . It is not needed before callingyEval _SaveThread() or PyE-

val _RestoreThread()

This is a no-op when called for a second time. Itis safe to call this function before dajlinigitialize()

When only the main thread exists, no lock operations are needed. This is a common situation (most Python
programs do not use threads), and the lock operations slow the interpreter down a bit. Therefore, the lock is not
created initially. This situation is equivalent to having acquired the lock: when there is only a single thread, all
object accesses are safe. Therefore, when this function initializes the lock, it also acquires it. Before the Python
thread module creates a new thread, knowing that either it has the lock or the lock hasn’t been created yet, it
callsPyEval _InitThreads() . When this call returns, it is guaranteed that the lock has been created and
that it has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global interpreter
lock.

This function is not available when thread support is disabled at compile time.

PyEval _AcquireLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock,
a deadlock ensues. This function is not available when thread support is disabled at compile time.

PyEval _ReleaselLock ()
Release the global interpreter lock. The lock must have been created earlier. This function is not available when
thread support is disabled at compile time.

PyEval _AcquireThread (PyThreadState *tstaje
Acquire the global interpreter lock and then set the current thread stastat® which should not b&lULL The
lock must have been created earlier. If this thread already has the lock, deadlock ensues. This function is not
available when thread support is disabled at compile time.

PyEval _ReleaseThread (PyThreadState *tstaje
Reset the current thread stateNbLL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. Ttateargument, which must not B8ULL, is only used
to check that it represents the current thread state — if it isn’t, a fatal error is reported. This function is not
available when thread support is disabled at compile time.

PyThreadState* PyEval _SaveThread ()

void

Release the interpreter lock (if it has been created and thread support is enabled) and reset the thread state to
NULL, returning the previous thread state (which is NotLL). If the lock has been created, the current thread
must have acquired it. (This function is available even when thread support is disabled at compile time.)

PyEval _RestoreThread (PyThreadState *tstaje
Acquire the interpreter lock (if it has been created and thread support is enabled) and set the threddtstate to
which must not beNULL If the lock has been created, the current thread must not have acquired it, otherwise
deadlock ensues. (This function is available even when thread support is disabled at compile time.)

Py_BEGIN_ALLOWTHREADS

This macro expands to[PyThreadState * _save; _save = PyEval _SaveThread(); ’. Note
that it contains an opening brace; it must be matched with a folloWynwgeEND ALLOW THREADSmacro.
See above for further discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py_END ALLOWTHREADS

This macro expands td®yEval _RestoreThread(_save); } . Note that it contains a closing brace; it

40

Chapter 8. Initialization, Finalization, and Threads

must be matched with an earliBy _BEGIN_ALLOW THREADSNacro. See above for further discussion of
this macro. It is a no-op when thread support is disabled at compile time.

Py_BEGIN_BLOCK THREADS
This macro expands to PyEval _RestoreThread(_save); ie. it is equivalent to
Py_END ALLOWTHREADSwithout the closing brace. It is a no-op when thread support is disabled at
compile time.

Py_BEGIN_UNBLOCKTHREADS
This macro expands to _save = PyEval _SaveThread(); ie. it is equivalent to
Py_BEGIN_ALLOWTHREADSwithout the opening brace and variable declaration. It is a no-op when
thread support is disabled at compile time.

’

’

All of the following functions are only available when thread support is enabled at compile time, and must be called
only when the interpreter lock has been created.

PylnterpreterState* PylnterpreterState _New()
Create a new interpreter state object. The interpreter lock need not be held, but may be held if it is necessary to
serialize calls to this function.

void PylnterpreterState _Clear (PylInterpreterState *interp
Reset all information in an interpreter state object. The interpreter lock must be held.

void PylnterpreterState _Delete (PyInterpreterState *interp
Destroy an interpreter state object. The interpreter lock need not be held. The interpreter state must have been
reset with a previous call BByInterpreterState _Clear()

PyThreadState* PyThreadState _New(PylnterpreterState *interp
Create a new thread state object belonging to the given interpreter object. The interpreter lock need not be held,
but may be held if it is necessary to serialize calls to this function.

void PyThreadState _Clear (PyThreadState *tstaje
Reset all information in a thread state object. The interpreter lock must be held.

void PyThreadState _Delete (PyThreadState *tstaje
Destroy a thread state object. The interpreter lock need not be held. The thread state must have been reset with
a previous call td’yThreadState _Clear()

PyThreadState* PyThreadState _Get()
Return the current thread state. The interpreter lock must be held. When the current thread\&fate this
issues a fatal error (so that the caller needn’t checliNfatL).

PyThreadState* PyThreadState _Swap(PyThreadState *tstaje
Swap the current thread state with the thread state given by the argtstegtwhich may beNULL The
interpreter lock must be held.

8.1. Thread State and the Global Interpreter Lock 41

42

CHAPTER
NINE

Defining New Object Types

PyObject* _PyObject _New(PyTypeObject *type

PyObject* _PyObject _NewVar(PyTypeObiject *type, int size
TYPE _PyObject _NEWTYPE, PyTypeObjec)*

TYPE _PyObject _NEWVAR TYPE, PyTypeObiject *, int sigxe
Py_InitModule (!

PyArg_ParseTupleAndKeywords, PyAr§arseTuple, PyArgParse
Py_BuildValue

PyObject, PyVarObject

PyObject HEAD, PyObject HEAD_INIT, PyObject VAR_HEAD

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjargproc, intintob-
jargproc, objobjargproc, getreadbufferproc, getwritebufferproc, getsegcountproc, destructor, printfunc, getattrfunc,
getattrofunc, setattrfunc, setattrofunc, cmpfunc, reprfunc, hashfunc

PyNumberMethods
PySequenceMethods
PyMappingMethods
PyBufferProcs
PyTypeObiject
DL_IMPORT
PyType_Type

Py*_Check
Py_None,_Py_NoneStruct

43

44

CHAPTER
TEN

Debugging

XXX Explain Py_DEBUG, Py TRACE_REFS, Py REF_DEBUG.

45

46

Symbols

_Pylmport _FindExtension() , 18
_Pylmport _Fini() ,18
_Pylmport _FixupExtension() , 19
_Pylmport _Init() , 18

_PyObject _NEW(), 43

_PyObject _NEWVAR(), 43
_PyObject _New() , 43

_PyObject _NewVar() , 43
_PyString _Resize() ,28
_PyTuple _Resize() ,29
_Py_c_diff) ,33

_Py_c_neg() ,33

_Py_c_pow() , 33

_Py_c_prod() ,33

_Py_c_quot() ,33

_Py_c_sum() , 33

__builtin __ (built-in module), 7, 35
__import __() (built-in function), 18
__main __ (built-in module), 7, 35

C

compile() (built-in function), 18

D
divmod() (built-in function), 23

E

environment variables
$PATH, 8
$PYTHONHOME, 8
$PYTHONPATH, 8

F

freeze utility, 19
I

ihooks (standard module), 18

M

module

INDEX

object, 34
search path, 7, 35, 37

O

object
module, 34

P

$PATH, 8
path

module search, 7, 35, 37
pow() (built-in function), 23
Py_AtExit() ,17
Py_BEGIN_ALLOW.THREADS 40
Py_BEGIN_BLOCK THREADS 41
Py_BEGIN_UNBLOCKTHREADS 41
Py_CompileString() , 9
Py_complex , 32
Py_DECREF(), 11
Py_END ALLOWTHREADS 40

Py_Endinterpreter() , 36
Py_Exit() ,17

Py _FatalError() , 17
Py_FdlsiInteractive() , 17

Py_Finalize() , 35
Py_GetBuildinfo() , 38
Py_GetCompiler() , 37
Py_GetCopyright() , 37
Py_GetExecPrefix() , 36
Py_GetPath() , 37
Py_GetPlatform() , 37
Py_GetPrefix() , 36
Py_GetProgramFullPath() , 37
Py_GetProgramName() , 36
Py_GetVersion() ,37
Py_INCREF() , 11

Py _Initialize() , 35

Py _lIsInitialized() , 35
Py_NewiInterpreter() , 35
Py_None, 27

Py_SetProgramName() , 36

47

Py_XDECREF(), 11
Py_XINCREF() , 11

PyCallable _Check() , 22
PyCObject , 34

PyCObject _AsVoidPtr() ,34

PyEval _ReleaseThread() , 40
PyEval _RestoreThread() ,40
PyEval _SaveThread() , 40
PyFile _AsFile() ,33

PyFile _Check() , 33

PyCObject _FromVoidPtr() ,34 PyFile _FromFile() , 26,33
PyCObject _FromVoidPtrAndDesc() , 34 PyFile _FromString() , 26, 33
PyCObject _GetDesc() , 34 PyFile _GetLine() ,33
PyComplex _AsCComplex() , 33 PyFile _Name(), 33

PyComplex _Check() , 32 PyFile _SetBufSize() ,33
PyComplex _FromCComplex() , 33 PyFile _SoftSpace() , 33
PyComplex _FromDoubles() , 33 PyFile _Type, 33

PyComplex _ImagAsDouble() , 33 PyFile _WriteObject() , 33
PyComplex _RealAsDouble() , 33 PyFile _WriteString() , 34
PyComplex _Type, 32 PyFileObject , 33
PyComplexObject , 32 PyFloat _AS_DOUBLE(), 32
PyDict _Check() , 30 PyFloat _AsDouble() , 32

PyDict _Clear() ,30 PyFloat _Check() , 32

PyDict _Delltem() ,30 PyFloat _FromDouble() , 26, 32
PyDict _DelltemString() , 30 PyFloat _Type, 32

PyDict _Getltem() ,30 PyFloatObject , 32

PyDict _GetltemString() , 30 Pylmport _AddModule() , 18
PyDict _Items() ,31 Pylmport _Cleanup() ,18

PyDict _Keys() , 31 Pylmport _ExecCodeModule() , 18
PyDict _New() , 26, 30 Pylmport _FrozenModules , 19
PyDict _Next() ,31 Pylmport _GetMagicNumber() , 18
PyDict _Setltem() , 30 Pylmport _GetModuleDict() , 18
PyDict _SetltemString() , 30 Pylmport _Import() ,18

PyDict _Size() ,31 Pylmport _ImportFrozenModule() , 19
PyDict _Type, 30 Pylmport _ImportModule() , 17
PyDict _Values() ,31 Pylmport _ImportModuleEx() , 18
PyDictObject , 30 Pylmport _ReloadModule() , 18
PyErr _BadArgument() , 14 Pyint _AS_LONG(), 31

PyErr _BadInternalCall() , 14 Pyint _AsLong() , 31

PyErr _CheckSignals() ,14 Pyint _Check() , 31

PyErr _Clear() ,13 Pyint _FromLong() , 26, 31

PyErr _ExceptionMatches() , 13 Pyint _GetMax() , 31

PyErr _Fetch() ,13 Pyint _Type, 31

PyErr _GivenExceptionMatches() , 13 PyInterpreterState , 39

PyErr _NewException() , 14 PylInterpreterState _Clear() ,41
PyErr _NoMemory() , 14 PylInterpreterState _Delete() ,41
PyErr _NormalizeException() , 13 PylInterpreterState _New() , 41
PyErr _Occurred() , 13 PyIntObject , 31

PyErr _Print() ,13 PyList _Append() , 29

PyErr _Restore() ,14 PyList _AsTuple() , 30

PyErr _SetFromErmo() , 14 PyList _Check() , 29

PyErr _Setinterrupt() , 14 PyList _GETITEM() , 30

PyErr _SetNone() , 14 PyList _GET_SIZE() , 30

PyErr _SetObject() ,14 PyList _Getltem() ,29

PyErr _SetString() , 14 PyList _GetSlice() ,29

PyEval _AcquireLock() ,40 PyList _Insert() ,29

PyEval _AcquireThread() , 40 PyList _New() , 26, 29

PyEval _InitThreads() , 40 PyList _Reverse() , 30

PyEval _ReleaselLock() ,40 PyList _SET_ITEM() , 30

48 Index

PyList _Setltem() ,29

PyList _SetSlice() ,30

PyList _Size() ,29

PyList _Sort() ,30

PyList _Type, 29

PyListObject , 29

PyLong _AsDouble() , 32
PyLong _AsLong() , 32

PyLong _AsUnsignedLong() , 32
PyLong _Check() , 31

PyLong _FromDouble() , 26, 32
PyLong _FromLong() , 26, 31
PyLong _FromString() , 32
PyLong _FromUnsignedLong() , 32
PyLong _Type, 31

PyLongObject , 31

PyMapping _Check() , 25
PyMapping _Clear() , 26
PyMapping _Delltem() ,25
PyMapping _DelltemString() , 25
PyMapping _GetltemString() , 26
PyMapping _HasKey() , 25
PyMapping _HasKeyString() , 25
PyMapping _Items() , 25
PyMapping _Keys() , 25
PyMapping _Length() , 25
PyMapping _SetltemString() , 26
PyMapping _Values() ,25
PyModule _GetDict() ,34
PyModule _GetFilename() ,34
PyModule _GetName() , 34
PyModule _New() , 34
PyNumber_Absolute() , 23
PyNumber_Add() , 23
PyNumber_And() , 24
PyNumber_Check() , 23
PyNumber_Coerce() ,24
PyNumber_Divide() , 23
PyNumber_Divmod() , 23
PyNumber_Float() ,24
PyNumber_Int() ,24
PyNumber_Invert() ,23
PyNumber_Long() , 24
PyNumber _Lshift() , 23
PyNumber_Multiply() , 23
PyNumber_Negative() , 23
PyNumber_Or() , 24

PyNumber _Positive() , 23
PyNumber_Power() , 23
PyNumber_Remainder() , 23
PyNumber_Rshift() ,23
PyNumber_Subtract() , 23
PyNumber_Xor() , 24

PyObject _CallFunction() , 22

PyObject _CallMethod() , 22
PyObject _CallObject() , 22
PyObject _Cmp(), 21

PyObject _Compare() , 22
PyObject _DelAttr() ,21
PyObject _DelAttrString() , 21
PyObject _Delltem() ,23
PyObject _GetAttr() ,21
PyObject _GetAttrString() , 21
PyObject _Getltem() , 22
PyObject _HasAttr() ,21
PyObject _HasAttrString() , 21
PyObject _Hash() , 22

PyObject _IsTrue() ,22
PyObject _Length() ,22
PyObject _Print() ,21
PyObject _Repr() , 22

PyObject _SetAttr() ,21
PyObject _SetAttrString() , 21
PyObject _Setltem() , 23
PyObject _Str() ,22

PyObject _Type() , 22
PyOS_GetlLastModificationTime()
PyParser _SimpleParseFile() , 9
PyParser _SimpleParseString()
PyRun_AnyFile() ,9
PyRun_File() ,9
PyRun_lInteractiveLoop() , 9
PyRun_lInteractiveOne() , 9
PyRun_SimpleFile() . 9
PyRun_SimpleString() , 9
PyRun_String() ,9

PySequence _Check() , 24
PySequence _Concat() , 24
PySequence _Count() , 25
PySequence _Delltem() ,24
PySequence _DelSlice() ,25
PySequence _Getltem() , 24
PySequence _GetSlice() ,24
PySequence _In() ,25
PySequence _Index() ,25
PySequence _Repeat() ,24
PySequence _Setltem() , 24
PySequence _SetSlice() ,25
PySequence _Tuple() ,25
PyString _AS_STRING() , 28
PyString _AsString() 28
PyString _Check() , 27
PyString _Concat() ,28
PyString _ConcatAndDel() , 28
PyString _Format() , 28
PyString _FromString() , 26, 28
PyString _FromStringAndSize()
PyString _GET_SIZE() , 28

, 17

9

, 26,28

Index

49

PyString _InternFromString() , 28
PyString _InterninPlace() , 28
PyString _Size() ,28
PyString _Type, 27
PyStringObject , 27

PySys _SetArgv() , 38
$PYTHONHOME, 8
$PYTHONPATH, 8
PyThreadState , 40
PyThreadState _Clear() ,41
PyThreadState _Delete() ,41
PyThreadState _Get() , 41
PyThreadState _New() , 41
PyThreadState _Swap() , 41
PyTuple _Check() , 28
PyTuple _GETITEM() , 29
PyTuple _Getltem() ,29
PyTuple _GetSlice() ,29
PyTuple _New() , 26, 28
PyTuple _SET_ITEM() , 29
PyTuple _Setltem() ,29
PyTuple _Size() ,29

PyTuple _Type, 28
PyTupleObject , 28

PyType _Type, 27
PyTypeObject , 27

R

reload() (built-in function), 18
repr() (built-in function), 22
rexec (standard module), 18

S

search

path, module, 7, 35, 37
signal (built-in module), 14
str() (built-in function), 22

struct _frozen ,19
sys (built-in module), 7, 35
T

thread (built-in module), 40
type() (built-in function), 22

50

Index

	1 Introduction
	1.1 Include Files
	1.2 Objects, Types and Reference Counts
	Reference Counts
	Reference Count Details

	Types

	1.3 Exceptions
	1.4 Embedding Python

	2 The Very High Level Layer
	3 Reference Counting
	4 Exception Handling
	4.1 Standard Exceptions

	5 Utilities
	5.1 OS Utilities
	5.2 Process Control
	5.3 Importing Modules

	6 Abstract Objects Layer
	6.1 Object Protocol
	6.2 Number Protocol
	6.3 Sequence Protocol
	6.4 Mapping Protocol
	6.5 Constructors

	7 Concrete Objects Layer
	7.1 Fundamental Objects
	Type Objects
	The None Object

	7.2 Sequence Objects
	String Objects
	Tuple Objects
	List Objects

	7.3 Mapping Objects
	Dictionary Objects

	7.4 Numeric Objects
	Plain Integer Objects
	Long Integer Objects
	Floating Point Objects
	Complex Number Objects

	7.5 Other Objects
	File Objects
	Module Objects
	CObjects

	8 Initialization, Finalization, and Threads
	8.1 Thread State and the Global Interpreter Lock

	9 Defining New Object Types
	10 Debugging
	Index

